These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate. Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide. Saul SJ; Sugumaran M Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025 [TBL] [Abstract][Full Text] [Related]
6. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone. Sugumaran M Arch Biochem Biophys; 2000 Jun; 378(2):404-10. PubMed ID: 10860558 [TBL] [Abstract][Full Text] [Related]
7. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone. Naish S; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921 [TBL] [Abstract][Full Text] [Related]
8. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster. Sugumaran M; Giglio L; Kundzicz H; Saul S; Semensi V Arch Insect Biochem Physiol; 1992; 19(4):271-83. PubMed ID: 1600191 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid. Sugumaran M; Dali H; Semensi V Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):849-53. PubMed ID: 1908223 [TBL] [Abstract][Full Text] [Related]
10. Kinetic study of the transient phase of a chemical reaction system coupled to an enzymatically catalyzed step. Application to the oxidation of epinine by tyrosinase. Escribano J; García M; García Cánovas F; García Carmona F; Varón R; Tudela J; Lozano JA Biophys Chem; 1987 Jul; 27(1):15-25. PubMed ID: 3111559 [TBL] [Abstract][Full Text] [Related]
11. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase. Sugumaran M; Nellaiappan K; Valivittan K Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization. Sugumaran M; Schinkmann K; Dali H Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172 [TBL] [Abstract][Full Text] [Related]
13. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine. Sugumaran M; Nelson E Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603 [TBL] [Abstract][Full Text] [Related]
14. Nonenzymatic transformations of enzymatically generated N-acetyldopamine quinone and isomeric dihydrocaffeiyl methyl amide quinone. Sugumaran M; Semensi V; Dali H; Saul S FEBS Lett; 1989 Sep; 255(2):345-9. PubMed ID: 2507359 [TBL] [Abstract][Full Text] [Related]
15. N-acetyldopamine quinone methide/1,2-dehydro-N-acetyl dopamine tautomerase. A new enzyme involved in sclerotization of insect cuticle. Saul SJ; Sugumaran M FEBS Lett; 1989 Sep; 255(2):340-4. PubMed ID: 2507358 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine. Wick MM; Fitzgerald G Chem Biol Interact; 1981 Dec; 38(1):99-107. PubMed ID: 6173137 [TBL] [Abstract][Full Text] [Related]
17. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine. Abebe A; Zheng D; Evans J; Sugumaran M Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898 [TBL] [Abstract][Full Text] [Related]
18. Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study. Jiménez M; García-Cánovas F; García-Carmona F; Iborra JL; Lozano JA Biochem Int; 1985 Jul; 11(1):51-9. PubMed ID: 2994673 [TBL] [Abstract][Full Text] [Related]
19. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. Cooksey CJ; Garratt PJ; Land EJ; Pavel S; Ramsden CA; Riley PA; Smit NP J Biol Chem; 1997 Oct; 272(42):26226-35. PubMed ID: 9334191 [TBL] [Abstract][Full Text] [Related]
20. Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Jimenez M; Garcia-Carmona F; Garcia-Canovas F; Iborra JL; Lozano JA; Martinez F Arch Biochem Biophys; 1984 Dec; 235(2):438-48. PubMed ID: 6097187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]