These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 3112146)
21. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid. Sugumaran M; Dali H; Semensi V Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884 [TBL] [Abstract][Full Text] [Related]
22. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase. Toussaint O; Lerch K Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867 [TBL] [Abstract][Full Text] [Related]
23. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry. Korytowski W; Sarna T; Kalyanaraman B; Sealy RC Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239 [TBL] [Abstract][Full Text] [Related]
24. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103 [TBL] [Abstract][Full Text] [Related]
25. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
26. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine. Sugumaran M; Semensi V; Kalyanaraman B; Bruce JM; Land EJ J Biol Chem; 1992 May; 267(15):10355-61. PubMed ID: 1316899 [TBL] [Abstract][Full Text] [Related]
27. Cobalt tyrosinase: replacement of the binuclear copper of Neurospora tyrosinase by cobalt. Rüegg C; Lerch K Biochemistry; 1981 Mar; 20(5):1256-62. PubMed ID: 6452896 [TBL] [Abstract][Full Text] [Related]
28. Trapping of transiently formed quinone methide during enzymatic conversion of N-acetyldopamine to N-acetylnorepinephrine. Sugumaran M; Saul S; Semensi V FEBS Lett; 1989 Jul; 252(1-2):135-8. PubMed ID: 2503395 [TBL] [Abstract][Full Text] [Related]
29. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
30. A convenient method for the preparation of N-beta-alanyldopamine as a substrate of phenoloxidase. Yamasaki N; Aso Y; Tsukamoto T Agric Biol Chem; 1990 Mar; 54(3):833. PubMed ID: 1368539 [No Abstract] [Full Text] [Related]
31. Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Gasparetti C; Nordlund E; Jänis J; Buchert J; Kruus K Biochim Biophys Acta; 2012 Apr; 1824(4):598-607. PubMed ID: 22266403 [TBL] [Abstract][Full Text] [Related]
32. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol. Jacobsohn GM; Jacobsohn MK Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238 [TBL] [Abstract][Full Text] [Related]
33. o-quinone/quinone methide isomerase: a novel enzyme preventing the destruction of self-matter by phenoloxidase-generated quinones during immune response in insects. Saul SJ; Sugumaran M FEBS Lett; 1989 Jun; 249(2):155-8. PubMed ID: 2500362 [TBL] [Abstract][Full Text] [Related]
34. Study of alpha-methyldopa oxidation by tyrosinase. Jiménez M; Garcia-Canovas F; Garcia-Carmona F; Tudela J; Iborra JL Int J Biochem; 1986; 18(1):39-47. PubMed ID: 3002882 [TBL] [Abstract][Full Text] [Related]
35. Kinetic properties of hexameric tyrosinase from the crustacean Palinurus elephas. Brack A; Hellmann N; Decker H Photochem Photobiol; 2008; 84(3):692-9. PubMed ID: 18422877 [TBL] [Abstract][Full Text] [Related]
36. Chemical and enzymatic oxidation of 4-methylcatechol in the presence and absence of L-serine. Spectrophotometric determination of intermediates. Cabanes J; García-Cánovas F; García-Carmona F Biochim Biophys Acta; 1987 Aug; 914(2):190-7. PubMed ID: 3111537 [TBL] [Abstract][Full Text] [Related]
37. Metabolism of 1-naphthol by tyrosinase. Doherty M D; Cohen GM; Gant TW; Naish S; Riley PA Biochem Pharmacol; 1985 Sep; 34(17):3167-72. PubMed ID: 3929786 [TBL] [Abstract][Full Text] [Related]
38. Characterization of a new enzyme system that desaturates the side chain of N-acetyldopamine. Saul SJ; Sugumaran M FEBS Lett; 1989 Jul; 251(1-2):69-73. PubMed ID: 2753165 [TBL] [Abstract][Full Text] [Related]
39. Affinity of drugs for dopa-auto-oxidation melanin and tyrosinase-catalyzed dopa-melanin in vitro. Hayasaka S; Tsuchiya M; Noda S; Setogawa T; Mizuno K Ophthalmic Res; 1988; 20(6):376-9. PubMed ID: 3148876 [TBL] [Abstract][Full Text] [Related]
40. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols. Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]