These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31121501)

  • 1. Thermophilic ligno-cellulolytic fungi: The future of efficient and rapid bio-waste management.
    Sahu A; Manna MC; Bhattacharjya S; Thakur JK; Mandal A; Rahman MM; Singh UB; Bhargav VK; Srivastava S; Patra AK; Chaudhari SK; Khanna SS
    J Environ Manage; 2019 Aug; 244():144-153. PubMed ID: 31121501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.
    Bustamante MA; Paredes C; Marhuenda-Egea FC; Pérez-Espinosa A; Bernal MP; Moral R
    Chemosphere; 2008 Jun; 72(4):551-7. PubMed ID: 18466954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity.
    Goyal S; Dhull SK; Kapoor KK
    Bioresour Technol; 2005 Sep; 96(14):1584-91. PubMed ID: 15978991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of four low-technology composting methods for market crop wastes.
    Tumuhairwe JB; Tenywa JS; Otabbong E; Ledin S
    Waste Manag; 2009 Aug; 29(8):2274-81. PubMed ID: 19364641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource recovery of food waste through continuous thermophilic in-vessel composting.
    Waqas M; Almeelbi T; Nizami AS
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5212-5222. PubMed ID: 28577144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting.
    Zhao X; He X; Xi B; Gao R; Tan W; Zhang H; Li D
    Waste Manag; 2016 Oct; 56():79-87. PubMed ID: 27425858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of indigenous ligno-cellulolytic microbial consortium to accelerate degradation of heterogenous crop residues.
    Sharma S; Kumawat KC; Kaur S
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88331-88346. PubMed ID: 35834084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting.
    Xu J; Jiang Z; Li M; Li Q
    J Environ Manage; 2019 Aug; 243():240-249. PubMed ID: 31100660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.
    Awasthi MK; Pandey AK; Khan J; Bundela PS; Wong JW; Selvam A
    Bioresour Technol; 2014 Sep; 168():214-21. PubMed ID: 24507579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients.
    Gil MV; Carballo MT; Calvo LF
    Waste Manag; 2008; 28(8):1432-40. PubMed ID: 17624756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaugmented composting of Jatropha de-oiled cake and vegetable waste under aerobic and partial anaerobic conditions.
    Chaturvedi S; Kumar A; Singh B; Nain L; Joshi M; Satya S
    J Basic Microbiol; 2013 Apr; 53(4):327-35. PubMed ID: 22736484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts.
    Mondini C; Sánchez-Monedero MA; Sinicco T; Leita L
    J Environ Qual; 2006; 35(6):2313-20. PubMed ID: 17071902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintaining the ratio of hydrosoluble carbon and hydrosoluble nitrogen within the optimal range to accelerate green waste composting.
    Yu K; Li S; Sun X; Kang Y
    Waste Manag; 2020 Mar; 105():405-413. PubMed ID: 32126368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery.
    Spaccini R; Cozzolino V; Di Meo V; Savy D; Drosos M; Piccolo A
    Sci Total Environ; 2019 Jan; 646():792-800. PubMed ID: 30064105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different techniques of composting on stability and maturity of municipal solid waste compost.
    Iqbal MK; Shafiq T; Ahmed K
    Environ Technol; 2010 Feb; 31(2):205-14. PubMed ID: 20391805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process.
    Lu WJ; Wang HT; Nie YF; Wang ZC; Huang DY; Qiu XY; Chen JC
    J Environ Sci Health B; 2004; 39(5-6):871-87. PubMed ID: 15620093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of amendments on windrow composting of sugar industry pressmud.
    Satisha GC; Devarajan L
    Waste Manag; 2007; 27(9):1083-91. PubMed ID: 16876397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different ratios of pig manure to fungus residue on physicochemical parameters during composting.
    Zhou J; Wang L; Wang H; Jiang L; Jiang X
    J Air Waste Manag Assoc; 2016 May; 66(5):499-507. PubMed ID: 26853329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal survival during anaerobic digestion of organic household waste.
    Schnürer A; Schnürer J
    Waste Manag; 2006; 26(11):1205-11. PubMed ID: 16293407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of laccase enzyme inducers on solid waste compost maturity and stability.
    Nadeem A; Baig S; Iqbal K; Sheikh N
    Environ Technol; 2014; 35(21-24):3130-8. PubMed ID: 25244141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.