These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31121759)

  • 21. Influence of Sodium Chloride on Thermal Inactivation and Recovery of Nonproteolytic Clostridium botulinum Type B Strain KAP B5 Spores
    Juneja VK; Eblen BS
    J Food Prot; 1995 Jul; 58(7):813-816. PubMed ID: 31137323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M; Stecchini ML; Braconnier A; Peck MW
    Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water.
    Raghubeer EV; Phan BN; Onuoha E; Diggins S; Aguilar V; Swanson S; Lee A
    Int J Food Microbiol; 2020 Oct; 331():108697. PubMed ID: 32563133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of Clean-Label Antimicrobials and Nitrite Derived from Natural Sources on the Outgrowth of Clostridium perfringens during Cooling of Deli-Style Turkey Breast.
    King AM; Glass KA; Milkowski AL; Sindelar JJ
    J Food Prot; 2015 May; 78(5):946-53. PubMed ID: 25951389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.
    Christiansen LN; Tompkin RB; Shaparis AB; Kueper TV; Johnston RW; Kautter DA; Kolari OJ
    Appl Microbiol; 1974 Apr; 27(4):733-7. PubMed ID: 4596753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples.
    Röhrl A; Lammel G
    Chemosphere; 2002 Mar; 46(8):1195-9. PubMed ID: 11951986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clostridium botulinum spores and toxin in mascarpone cheese and other milk products.
    Franciosa G; Pourshaban M; Gianfranceschi M; Gattuso A; Fenicia L; Ferrini AM; Mannoni V; De Luca G; Aureli P
    J Food Prot; 1999 Aug; 62(8):867-71. PubMed ID: 10456738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the Botulism Hazard from Vegetables in Modified Atmosphere Packaging.
    Larson AE; Johnson EA; Barmore CR; Hughes MD
    J Food Prot; 1997 Oct; 60(10):1208-1214. PubMed ID: 31207733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.
    Lyon WJ; Reddmann CS
    J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inability of Pediococcus pentosaceus to Inhibit Clostridium botulinum in
    Crandall AD; Winkowski K; Montville TJ
    J Food Prot; 1994 Feb; 57(2):104-107. PubMed ID: 31113140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CHEMICAL SENSITIZATION OF CLOSTRIDIUM BOTULINUM SPORES TO RADIATION IN MEAT.
    KRABBENHOFT KL; CORLETT DA; ANDERSON AW; ELLIKER PR
    Appl Microbiol; 1964 Sep; 12(5):424-7. PubMed ID: 14215973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat.
    Moorhead SM; Bell RG
    Lett Appl Microbiol; 1999 Feb; 28(2):108-12. PubMed ID: 10063639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the effects of a mixture of organic acids and duration of storage on the survival of salmonella on turkey carcasses.
    Mikołajczyk A
    J Food Prot; 2015 Mar; 78(3):585-9. PubMed ID: 25719885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack.
    Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T
    J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum.
    Reddy NR; Marshall KM; Morrissey TR; Loeza V; Patazca E; Skinner GE; Krishnamurthy K; Larkin JW
    J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Change of thermal inactivation of Clostridium botulinum spores during rice cooking.
    Konagaya Y; Urakami H; Hoshino J; Kobayashi A; Sasagawa A; Yamazaki A; Kozaki S; Tanaka N
    J Food Prot; 2009 Nov; 72(11):2400-6. PubMed ID: 19903408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide.
    Glass KA; Kaufman KM; Smith AL; Johnson EA; Chen JH; Hotchkiss J
    J Food Prot; 1999 Aug; 62(8):872-6. PubMed ID: 10456739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.