These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 3112188)

  • 1. Initial junctions between developing parallel fibers and Purkinje cells are different from mature synaptic junctions.
    Landis DM
    J Comp Neurol; 1987 Jun; 260(4):513-25. PubMed ID: 3112188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the structure of synaptic junctions during climbing fiber synaptogenesis.
    Landis DM; Payne HR; Weinstein LA
    Synapse; 1989; 4(4):281-93. PubMed ID: 2603147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathogenesis of parvovirus-induced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, Golgi and electron microscopic studies.
    Oster-Granite ML; Herndon RM
    J Comp Neurol; 1976 Oct; 169(4):481-521. PubMed ID: 789416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional and high resolution field emission scanning electron microscopy of vertebrate cerebellar parallel fiber-Purkinje spine synapses.
    Castejón OJ; Apkarian RP
    Cell Mol Biol (Noisy-le-grand); 1993 Dec; 39(8):863-73. PubMed ID: 8298435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice.
    Landis DM; Sidman RL
    J Comp Neurol; 1978 Jun; 179(4):831-63. PubMed ID: 641237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D electron microscopic reconstruction of segments of rat cerebellar Purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs.
    Lu H; Esquivel AV; Bower JM
    J Comp Neurol; 2009 Jun; 514(6):583-94. PubMed ID: 19363797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Purkinje cell membrane in staggerer and weaver mutant mice.
    Landis DM; Reese TS
    J Comp Neurol; 1977 Jan; 171(2):247-60. PubMed ID: 833350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field emission scanning electron microscopy and freeze-fracture transmission electron microscopy of mouse cerebellar synaptic contacts.
    Castejón OJ; Apkarian RP; Castejón HV; Alvarado MV
    J Submicrosc Cytol Pathol; 2001 Jul; 33(3):289-300. PubMed ID: 11846097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study.
    Privat A; Drian MJ
    J Comp Neurol; 1976 Mar; 166(2):201-43. PubMed ID: 1262555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum.
    Hillman DE; Chen S
    Prog Clin Biol Res; 1981; 59A():229-45. PubMed ID: 6795641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substructure in the postsynaptic density of Purkinje cell dendritic spines revealed by rapid freezing and etching.
    Landis DM; Weinstein LA; Reese TS
    Synapse; 1987; 1(6):552-8. PubMed ID: 3455562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The normal and aberrant development of synaptic structures between parallel fibers and Purkinje cell dendritic spines.
    Hirano A
    J Neural Transm Suppl; 1983; 18():1-8. PubMed ID: 6576111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptogenesis in the cerebellar cortex: differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells.
    Viltono L; Patrizi A; Fritschy JM; Sassoè-Pognetto M
    J Comp Neurol; 2008 Jun; 508(4):579-91. PubMed ID: 18366064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further observations on cerebellar climbing fibers. A study by means of light microscopy, confocal laser scanning microscopy and scanning and transmission electron microscopy.
    Castejón OJ; Castejón HV; Alvarado MV
    Biocell; 2000 Dec; 24(3):197-212. PubMed ID: 11201655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and degeneration of Purkinje cells in pcd mutant mice.
    Landis SC; Mullen RJ
    J Comp Neurol; 1978 Jan; 177(1):125-43. PubMed ID: 200636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.
    Sotelo C
    J Comp Neurol; 2008 Jan; 506(2):240-62. PubMed ID: 18022955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of organotypic cultures of mouse cerebellum exposed to cytosine arabinoside: a timed ultrastructural study.
    Seil FJ; Herndon RM; Tiekotter KL; Blank NK
    J Comp Neurol; 1991 Nov; 313(2):193-212. PubMed ID: 1765580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning electron microscope, freeze etching and glycosaminoglycan cytochemical studies of the cerebellar climbing fiber system.
    Castejón OJ; Castejón HV
    Scanning Microsc; 1988 Dec; 2(4):2181-93. PubMed ID: 2467357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.