These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 31121941)

  • 1. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments.
    Sommer J; Trautner C; Witte AK; Fister S; Schoder D; Rossmanith P; Mester PJ
    Viruses; 2019 May; 11(5):. PubMed ID: 31121941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants.
    Campagna C; Villion M; Labrie SJ; Duchaine C; Moineau S
    Int J Food Microbiol; 2014 Feb; 171():41-7. PubMed ID: 24321601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa.
    Stachler E; Kull A; Julian TR
    Appl Environ Microbiol; 2021 Sep; 87(20):e0098021. PubMed ID: 34347517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide variation in effectiveness of laboratory disinfectants against bacteriophages.
    Halfhide DE; Gannon BW; Hayes CM; Roe JM
    Lett Appl Microbiol; 2008 Dec; 47(6):608-12. PubMed ID: 19120934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Dairy Bacteriophages by Thermal and Chemical Treatments.
    Marcó MB; Suárez VB; Quiberoni A; Pujato SA
    Viruses; 2019 May; 11(5):. PubMed ID: 31130656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Combined Effect of Bacteriophage vB3530 and Chlorhexidine on the Inactivation of Pseudomonas aeruginosa.
    Liu Y; Zhao Y; Qian C; Huang Z; Feng L; Chen L; Yao Z; Xu C; Ye J; Zhou T
    BMC Microbiol; 2023 Sep; 23(1):256. PubMed ID: 37704976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application.
    Pujato SA; Guglielmotti DM; Ackermann HW; Patrignani F; Lanciotti R; Reinheimer JA; Quiberoni A
    Int J Food Microbiol; 2014 May; 177():81-8. PubMed ID: 24607426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant and Recombinant Phages Selected from
    Peters TL; Song Y; Bryan DW; Hudson LK; Denes TG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application and challenge of bacteriophage in the food protection.
    Ge H; Fu S; Guo H; Hu M; Xu Z; Zhou X; Chen X; Jiao X
    Int J Food Microbiol; 2022 Nov; 380():109872. PubMed ID: 35981493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages.
    Bigwood T; Hudson JA; Billington C
    FEMS Microbiol Lett; 2009 Feb; 291(1):59-64. PubMed ID: 19076235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Interactions Between Bacteriophage phiIPLA-RODI and Four Chemical Disinfectants for the Elimination of Staphylococcus aureus Contamination.
    Agún S; Fernández L; González-Menéndez E; Martínez B; Rodríguez A; García P
    Viruses; 2018 Feb; 10(3):. PubMed ID: 29495568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of commercial disinfectants for inactivating hepatitis A virus on agri-food surfaces.
    Jean J; Vachon JF; Moroni O; Darveau A; Kukavica-Ibrulj I; Fliss I
    J Food Prot; 2003 Jan; 66(1):115-9. PubMed ID: 12540190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage control of foodborne bacteriat.
    Greer GG
    J Food Prot; 2005 May; 68(5):1102-11. PubMed ID: 15895751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the virucidal efficacy of peracetic acid, potassium monopersulphate and sodium hypochlorite on bacteriophages P001 and MS2.
    Morin T; Martin H; Soumet C; Fresnel R; Lamaudière S; Le Sauvage AL; Deleurme K; Maris P
    J Appl Microbiol; 2015 Sep; 119(3):655-65. PubMed ID: 26095543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating efficacy of field-generated electrochemical oxidants on disinfection of fomites using bacteriophage MS2 and mouse norovirus MNV-1 as pathogenic virus surrogates.
    Julian TR; Trumble JM; Schwab KJ
    Food Environ Virol; 2014 Jun; 6(2):145-55. PubMed ID: 24562764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of bacteriophages for the inactivation of Salmonella spp. in biofilms.
    Sadekuzzaman M; Mizan MFR; Yang S; Kim HS; Ha SD
    Food Sci Technol Int; 2018 Jul; 24(5):424-433. PubMed ID: 29546997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of bacteriophages against saprophytic mesophilic bacteria in minimally processed food.
    Wójcicki M; Żuwalski A; Świder O; Gientka I; Shymialevich D; Błażejak S
    Acta Sci Pol Technol Aliment; 2021; 20(4):473-484. PubMed ID: 34724371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stability of Lactococcus lactis phages treated with sodium hypochlorite and during storage].
    Parada JL; de Fabrizio SV
    Rev Argent Microbiol; 2001; 33(2):89-95. PubMed ID: 11494761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and infectivity of cytolethal distending toxin type V gene-carrying bacteriophages in a water mesocosm and under different inactivation conditions.
    Allué-Guardia A; Jofre J; Muniesa M
    Appl Environ Microbiol; 2012 Aug; 78(16):5818-23. PubMed ID: 22685154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow's Milk.
    Tanaka C; Yamada K; Takeuchi H; Inokuchi Y; Kashiwagi A; Toba T
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.