BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31121988)

  • 1. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy.
    Cignetti M; Godone D; Wrzesniak A; Giordan D
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31121988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.
    Eker R; Aydın A; Hübl J
    Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-source remote sensing-based landslide investigation: the case of the August 7, 2020, Gokseong landslide in South Korea.
    Choi SK; Ramirez RA; Lim HH; Kwon TH
    Sci Rep; 2024 May; 14(1):12048. PubMed ID: 38802364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications.
    Al-Rawabdeh A; Moussa A; Foroutan M; El-Sheimy N; Habib A
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29057847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of high-resolution topographic information in forest environments using integrated UAV-LiDAR system: System development and field demonstration.
    Choi SK; Ramirez RA; Kwon TH
    Heliyon; 2023 Sep; 9(9):e20225. PubMed ID: 37810106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Level Sensing Technologies in Landslide Research-Hrvatska Kostajnica Case Study, Croatia.
    Podolszki L; Kosović I; Novosel T; Kurečić T
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey).
    Karsli F; Atasoy M; Yalcin A; Reis S; Demir O; Gokceoglu C
    Environ Monit Assess; 2009 Sep; 156(1-4):241-55. PubMed ID: 18780152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-scale UAV image matching method applied to large-scale landslide reconstruction.
    Ren C; Zhi X; Pu Y; Zhang F
    Math Biosci Eng; 2021 Mar; 18(3):2274-2287. PubMed ID: 33892545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding complex slope deformation through tree-ring analyses.
    Šilhán K; Tichavský R; Fabiánová A; Chalupa V; Chalupová O; Škarpich V; Tolasz R
    Sci Total Environ; 2019 May; 665():1083-1094. PubMed ID: 30893740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UAVs for Structure-From-Motion Coastal Monitoring: A Case Study to Assess the Evolution of Embryo Dunes over a Two-Year Time Frame in the Po River Delta, Italy.
    Taddia Y; Corbau C; Zambello E; Pellegrinelli A
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field testing innovative differential geospatial and photogrammetric monitoring technologies in mountainous terrain near Ashcroft, British Columbia, Canada.
    Huntley D; Bobrowsky P; Macleod R; Cocking R; Joseph J; Rotheram-Clarke D
    J Mt Sci; 2021; 18(1):1-20. PubMed ID: 33456447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy Analysis of a New Data Processing Method for Landslide Monitoring Based on Unmanned Aerial System Photogrammetry.
    Jakopec I; Marendić A; Grgac I
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using archaeological and geomorphological evidence for the establishment of a relative chronology and evolution pattern for Holocene landslides.
    Niculiţă M; Mărgărint MC; Cristea AI
    PLoS One; 2019; 14(12):e0227335. PubMed ID: 31891649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of landslide detection using radial basis functions: a case study of the Taşkent landslide, Turkey.
    Zeybek M; Şanlıoğlu İ
    Environ Monit Assess; 2020 Mar; 192(4):230. PubMed ID: 32166522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring.
    Zuliani D; Tunini L; Di Traglia F; Chersich M; Curone D
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landslide hazard assessment: recent trends and techniques.
    Pardeshi SD; Autade SE; Pardeshi SS
    Springerplus; 2013; 2():523. PubMed ID: 25674398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery.
    Genchi SA; Vitale AJ; Perillo GM; Delrieux CA
    Sensors (Basel); 2015 Feb; 15(2):3593-609. PubMed ID: 25658392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Well Drainage on Treating Seepage-Induced Reservoir Landslides.
    Zou Z; Lu S; Wang F; Tang H; Hu X; Tan Q; Yuan Y
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles.
    Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.