These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. [Genetic code expansion and its application in characterization and imaging of proteins]. Li Z; Ling H Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):620-631. PubMed ID: 35234386 [TBL] [Abstract][Full Text] [Related]
7. Current covalent modification methods for detecting RNA in fixed and living cells. Holstein JM; Rentmeister A Methods; 2016 Apr; 98():18-25. PubMed ID: 26615954 [TBL] [Abstract][Full Text] [Related]
8. To View Your Biomolecule, Click inside the Cell. Rigolot V; Biot C; Lion C Angew Chem Int Ed Engl; 2021 Oct; 60(43):23084-23105. PubMed ID: 34097349 [TBL] [Abstract][Full Text] [Related]
9. Labeling proteins on live mammalian cells using click chemistry. Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116 [TBL] [Abstract][Full Text] [Related]
10. Genetic Code Expansion- and Click Chemistry-Based Site-Specific Protein Labeling for Intracellular DNA-PAINT Imaging. Nikić-Spiegel I Methods Mol Biol; 2018; 1728():279-295. PubMed ID: 29405005 [TBL] [Abstract][Full Text] [Related]
11. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. Peng T; Hang HC J Am Chem Soc; 2016 Nov; 138(43):14423-14433. PubMed ID: 27768298 [TBL] [Abstract][Full Text] [Related]
12. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Yoon HY; Koo H; Kim K; Kwon IC Biomaterials; 2017 Jul; 132():28-36. PubMed ID: 28399460 [TBL] [Abstract][Full Text] [Related]
13. Site-specific protein conjugates incorporating Para-Azido-L-Phenylalanine for cellular and in vivo imaging. Lightle HE; Kafley P; Lewis TR; Wang RE Methods; 2023 Nov; 219():95-101. PubMed ID: 37804961 [TBL] [Abstract][Full Text] [Related]
14. Using unnatural amino acids to selectively label proteins for cellular imaging: a cell biologist viewpoint. Elia N FEBS J; 2021 Feb; 288(4):1107-1117. PubMed ID: 32640070 [TBL] [Abstract][Full Text] [Related]
15. Introducing bioorthogonal functionalities into proteins in living cells. Hao Z; Hong S; Chen X; Chen PR Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Rowland MM; Bostic HE; Gong D; Speers AE; Lucas N; Cho W; Cravatt BF; Best MD Biochemistry; 2011 Dec; 50(51):11143-61. PubMed ID: 22074223 [TBL] [Abstract][Full Text] [Related]
17. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Borrmann A; Milles S; Plass T; Dommerholt J; Verkade JM; Wiessler M; Schultz C; van Hest JC; van Delft FL; Lemke EA Chembiochem; 2012 Sep; 13(14):2094-9. PubMed ID: 22945333 [TBL] [Abstract][Full Text] [Related]
18. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Mattheisen JM; Wollowitz JS; Huber T; Sakmar TP Protein Sci; 2023 Feb; 32(2):e4550. PubMed ID: 36540928 [TBL] [Abstract][Full Text] [Related]
19. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Helma J; Leonhardt H; Hackenberger CPR; Schumacher D Methods Mol Biol; 2018; 1728():67-93. PubMed ID: 29404991 [TBL] [Abstract][Full Text] [Related]
20. Genetic encoding of unnatural amino acids for labeling proteins. Lang K; Davis L; Chin JW Methods Mol Biol; 2015; 1266():217-28. PubMed ID: 25560078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]