BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31122229)

  • 1. A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling.
    Prole DL; Taylor CW
    BMC Biol; 2019 May; 17(1):41. PubMed ID: 31122229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unintended perturbation of protein function using GFP nanobodies in human cells.
    Küey C; Larocque G; Clarke NI; Royle SJ
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31601614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.
    Röder R; Helma J; Preiß T; Rädler JO; Leonhardt H; Wagner E
    Pharm Res; 2017 Jan; 34(1):161-174. PubMed ID: 27800572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface.
    Buser DP; Schleicher KD; Prescianotto-Baschong C; Spiess M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6227-E6236. PubMed ID: 29915061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice.
    Rhee JM; Pirity MK; Lackan CS; Long JZ; Kondoh G; Takeda J; Hadjantonakis AK
    Genesis; 2006 Apr; 44(4):202-18. PubMed ID: 16604528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Endocytic Uptake and Retrograde Transport to the Trans-Golgi Network Using Functionalized Nanobodies in Cultured Cells.
    Buser DP; Spiess M
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy.
    Cramer K; Bolender AL; Stockmar I; Jungmann R; Kasper R; Shin JY
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31295803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging.
    Hebbrecht T; Liu J; Zwaenepoel O; Boddin G; Van Leene C; Decoene K; Madder A; Braeckmans K; Gettemans J
    N Biotechnol; 2020 Nov; 59():33-43. PubMed ID: 32659511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells.
    Rizzuto R; Brini M; Pizzo P; Murgia M; Pozzan T
    Curr Biol; 1995 Jun; 5(6):635-42. PubMed ID: 7552174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanobody toolbox to investigate localisation and dynamics of
    Loreau V; Rees R; Chan EH; Taxer W; Gregor K; Mußil B; Pitaval C; Luis NM; Mangeol P; Schnorrer F; Görlich D
    Elife; 2023 Jan; 12():. PubMed ID: 36645120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research Progresses and Applications of Fluorescent Protein Antibodies: A Review Focusing on Nanobodies.
    Chen YL; Xie XX; Zhong N; Sun LC; Lin D; Zhang LJ; Weng L; Jin T; Cao MJ
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNAP-Tagged Nanobodies Enable Reversible Optical Control of a G Protein-Coupled Receptor via a Remotely Tethered Photoswitchable Ligand.
    Farrants H; Gutzeit VA; Acosta-Ruiz A; Trauner D; Johnsson K; Levitz J; Broichhagen J
    ACS Chem Biol; 2018 Sep; 13(9):2682-2688. PubMed ID: 30141622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust pipeline for rapid production of versatile nanobody repertoires.
    Fridy PC; Li Y; Keegan S; Thompson MK; Nudelman I; Scheid JF; Oeffinger M; Nussenzweig MC; Fenyö D; Chait BT; Rout MP
    Nat Methods; 2014 Dec; 11(12):1253-60. PubMed ID: 25362362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Red-Shifted Cameleons for Imaging Ca²⁺ Dynamics of the Endoplasmic Reticulum.
    Waldeck-Weiermair M; Bischof H; Blass S; Deak AT; Klec C; Graier T; Roller C; Rost R; Eroglu E; Gottschalk B; Hofmann NA; Graier WF; Malli R
    Sensors (Basel); 2015 Jun; 15(6):13052-68. PubMed ID: 26053751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology.
    Matsuda S; Aguilar G; Vigano MA; Affolter M
    Methods Mol Biol; 2022; 2446():581-593. PubMed ID: 35157295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38.
    Girotti M; Banting G
    J Cell Sci; 1996 Dec; 109 ( Pt 12)():2915-26. PubMed ID: 9013339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the binding of nanobodies LaM2 and LaM4 to the red fluorescent protein mCherry.
    Wang Z; Li L; Hu R; Zhong P; Zhang Y; Cheng S; Jiang H; Liu R; Ding Y
    Protein Sci; 2021 Nov; 30(11):2298-2309. PubMed ID: 34562299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.
    Chiesa A; Rapizzi E; Tosello V; Pinton P; de Virgilio M; Fogarty KE; Rizzuto R
    Biochem J; 2001 Apr; 355(Pt 1):1-12. PubMed ID: 11256942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NaNuTrap: a technique for in vivo cell nucleus labelling using nanobodies.
    Ákos Z; Dunipace L; Stathopoulos A
    Development; 2021 Sep; 148(18):. PubMed ID: 34328170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
    Ariotti N; Rae J; Giles N; Martel N; Sierecki E; Gambin Y; Hall TE; Parton RG
    PLoS Biol; 2018 Apr; 16(4):e2005473. PubMed ID: 29621251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.