These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31122246)

  • 1. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation.
    Osiro KO; Brink DP; Borgström C; Wasserstrom L; Carlquist M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29315378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.
    Wei N; Xu H; Kim SR; Jin YS
    Appl Environ Microbiol; 2013 May; 79(10):3193-201. PubMed ID: 23475614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling.
    Brink DP; Borgström C; Tueros FG; Gorwa-Grauslund MF
    Microb Cell Fact; 2016 Oct; 15(1):183. PubMed ID: 27776527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.
    Xu JR; Zhao XQ; Liu CG; Bai FW
    Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
    Myers KS; Riley NM; MacGilvray ME; Sato TK; McGee M; Heilberger J; Coon JJ; Gasch AP
    PLoS Genet; 2019 Mar; 15(3):e1008037. PubMed ID: 30856163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing.
    Borgström C; Persson VC; Rogova O; Osiro KO; Lundberg E; Spégel P; Gorwa-Grauslund M
    Microb Cell Fact; 2022 Dec; 21(1):253. PubMed ID: 36456947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain.
    Nijland JG; Shin HY; Dore E; Rudinatha D; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33232441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.
    Hou J; Suo F; Wang C; Li X; Shen Y; Bao X
    BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.
    Salusjärvi L; Kaunisto S; Holmström S; Vehkomäki ML; Koivuranta K; Pitkänen JP; Ruohonen L
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1383-92. PubMed ID: 24113892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways.
    Persson VC; Perruca Foncillas R; Anderes TR; Ginestet C; Gorwa-Grauslund M
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):168. PubMed ID: 37932829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Xylose Sensing in
    Brink DP; Borgström C; Persson VC; Ofuji Osiro K; Gorwa-Grauslund MF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.