These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31122749)
1. Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. Crocini C; Walker CJ; Anseth KS; Leinwand LA Prog Biophys Mol Biol; 2020 Aug; 154():71-79. PubMed ID: 31122749 [TBL] [Abstract][Full Text] [Related]
2. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499 [TBL] [Abstract][Full Text] [Related]
3. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Weber LM; He J; Bradley B; Haskins K; Anseth KS Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. Cao Y; Lee BH; Peled HB; Venkatraman SS J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015 [TBL] [Abstract][Full Text] [Related]
5. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997 [TBL] [Abstract][Full Text] [Related]
6. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. Blakney AK; Swartzlander MD; Bryant SJ J Biomed Mater Res A; 2012 Jun; 100(6):1375-86. PubMed ID: 22407522 [TBL] [Abstract][Full Text] [Related]
7. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231. Reynolds DS; Bougher KM; Letendre JH; Fitzgerald SF; Gisladottir UO; Grinstaff MW; Zaman MH Acta Biomater; 2018 Sep; 77():85-95. PubMed ID: 30030173 [TBL] [Abstract][Full Text] [Related]
8. Comparison of neurite growth in three dimensional natural and synthetic hydrogels. Zhou W; Blewitt M; Hobgood A; Willits RK J Biomater Sci Polym Ed; 2013; 24(3):301-14. PubMed ID: 23565649 [TBL] [Abstract][Full Text] [Related]
9. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Mabry KM; Lawrence RL; Anseth KS Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554 [TBL] [Abstract][Full Text] [Related]
10. Versatile lysine dendrigrafts and polyethylene glycol hydrogels with inherent biological properties: in vitro cell behavior modulation and in vivo biocompatibility. Carrancá M; Griveau L; Remoué N; Lorion C; Weiss P; Orea V; Sigaudo-Roussel D; Faye C; Ferri-Angulo D; Debret R; Sohier J J Biomed Mater Res A; 2021 Jun; 109(6):926-937. PubMed ID: 32779367 [TBL] [Abstract][Full Text] [Related]
11. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. Kudva AK; Luyten FP; Patterson J J Biomed Mater Res A; 2018 Jan; 106(1):33-42. PubMed ID: 28875574 [TBL] [Abstract][Full Text] [Related]
12. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. Drira Z; Yadavalli VK J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877 [TBL] [Abstract][Full Text] [Related]
13. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
14. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
15. Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation. de Miguel-Jiménez A; Ebeling B; Paez JI; Fink-Straube C; Pearson S; Del Campo A Macromol Biosci; 2023 Feb; 23(2):e2200419. PubMed ID: 36457236 [TBL] [Abstract][Full Text] [Related]
16. Patterning Three-Dimensional Hydrogel Microenvironments Using Hyperbranched Polyglycerols for Independent Control of Mesh Size and Stiffness. Pedron S; Pritchard AM; Vincil GA; Andrade B; Zimmerman SC; Harley BA Biomacromolecules; 2017 Apr; 18(4):1393-1400. PubMed ID: 28245360 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering. Chen JX; Yuan J; Wu YL; Wang P; Zhao P; Lv GZ; Chen JH J Biomed Mater Res A; 2018 Jan; 106(1):192-200. PubMed ID: 28884502 [TBL] [Abstract][Full Text] [Related]
18. Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Smith AW; Segar CE; Nguyen PK; MacEwan MR; Efimov IR; Elbert DL Acta Biomater; 2012 Jan; 8(1):31-40. PubMed ID: 21920469 [TBL] [Abstract][Full Text] [Related]
19. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Smith AW; Hoyne JD; Nguyen PK; McCreedy DA; Aly H; Efimov IR; Rentschler S; Elbert DL Biomaterials; 2013 Sep; 34(28):6559-71. PubMed ID: 23773820 [TBL] [Abstract][Full Text] [Related]
20. Development of a biostable replacement for PEGDA hydrogels. Browning MB; Cosgriff-Hernandez E Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]