BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31123261)

  • 1. Longitudinal 16S rRNA data derived from limb regenerative tissue samples of axolotl Ambystoma mexicanum.
    Demircan T; İlhan AE; Ovezmyradov G; Öztürk G; Yıldırım S
    Sci Data; 2019 May; 6(1):70. PubMed ID: 31123261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimentally induced metamorphosis in highly regenerative axolotl (ambystoma mexicanum) under constant diet restructures microbiota.
    Demircan T; Ovezmyradov G; Yıldırım B; Keskin İ; İlhan AE; Fesçioğlu EC; Öztürk G; Yıldırım S
    Sci Rep; 2018 Jul; 8(1):10974. PubMed ID: 30030457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation analysis of core cell cycle regulators and their transcriptional behavior during limb regeneration in Ambystoma mexicanum.
    Espinal-Centeno A; Dipp-Álvarez M; Saldaña C; Bako L; Cruz-Ramírez A
    Mech Dev; 2020 Dec; 164():103651. PubMed ID: 33127453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.
    Guelke E; Bucan V; Liebsch C; Lazaridis A; Radtke C; Vogt PM; Reimers K
    Gene; 2015 Apr; 560(1):114-23. PubMed ID: 25637570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Microbiome Modulate Regenerative Capacity? A Comparative Microbiome Study Reveals a Dominant Presence of Flavobacteriaceae in Blastema Tissue During Axolotl Limb Regeneration.
    Demircan T; Gül S; Taşçı EA
    OMICS; 2024 Jun; 28(6):291-302. PubMed ID: 38808529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.
    Mitogawa K; Makanae A; Satoh A; Satoh A
    PLoS One; 2015; 10(7):e0133375. PubMed ID: 26186213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional correlates of proximal-distal identify and regeneration timing in axolotl limbs.
    Randal Voss S; Murrugarra D; Jensen TB; Monaghan JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Jun; 208():53-63. PubMed ID: 29107037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of protein expression profile of limb regeneration between neotenic and metamorphic axolotl.
    Sibai M; Altuntaş E; Süzek BE; Şahin B; Parlayan C; Öztürk G; Baykal AT; Demircan T
    Biochem Biophys Res Commun; 2020 Feb; 522(2):428-434. PubMed ID: 31767146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analysis of microRNA expression during axolotl limb regeneration.
    Holman EC; Campbell LJ; Hines J; Crews CM
    PLoS One; 2012; 7(9):e41804. PubMed ID: 23028429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics and epigenomics of axolotl regeneration.
    Sámano C; González-Barrios R; Castro-Azpíroz M; Torres-García D; Ocampo-Cervantes JA; Otero-Negrete J; Soto-Reyes E
    Int J Dev Biol; 2021; 65(7-8-9):465-474. PubMed ID: 33629732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb regeneration in salamanders: the plethodontid tale.
    Arenas-Gómez CM; Delgado JP
    Int J Dev Biol; 2021; 65(4-5-6):313-321. PubMed ID: 32930368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomics of limb regeneration: Identification of conserved expression changes among three species of Ambystoma.
    Dwaraka VB; Smith JJ; Woodcock MR; Voss SR
    Genomics; 2019 Dec; 111(6):1216-1225. PubMed ID: 30092345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal development in Ambystoma mexicanum: A complementary staging table for the skull based on Alizarin red S staining.
    Atkins JB; Houle L; Cantelon AS; Maddin HC
    Dev Dyn; 2020 May; 249(5):656-665. PubMed ID: 31930611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.
    Ponomareva LV; Athippozhy A; Thorson JS; Voss SR
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 Dec; 178():128-135. PubMed ID: 26092703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).
    Caballero-Pérez J; Espinal-Centeno A; Falcon F; García-Ortega LF; Curiel-Quesada E; Cruz-Hernández A; Bako L; Chen X; Martínez O; Alberto Arteaga-Vázquez M; Herrera-Estrella L; Cruz-Ramírez A
    Dev Biol; 2018 Jan; 433(2):227-239. PubMed ID: 29291975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic expression of two thrombospondins during axolotl limb regeneration.
    Whited JL; Lehoczky JA; Austin CA; Tabin CJ
    Dev Dyn; 2011 May; 240(5):1249-58. PubMed ID: 21360624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies.
    Voss SR; Epperlein HH; Tanaka EM
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.emo128. PubMed ID: 20147230
    [No Abstract]   [Full Text] [Related]  

  • 18. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.
    Flowers GP; Sanor LD; Crews CM
    Elife; 2017 Sep; 6():. PubMed ID: 28917058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the role of microRNAs in axolotl regeneration.
    Abo-Al-Ela HG; Burgos-Aceves MA
    J Cell Physiol; 2021 Feb; 236(2):839-850. PubMed ID: 32638401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Identification and Characterization of the Axolotl (
    Springhetti S; Bucan V; Liebsch C; Lazaridis A; Vogt PM; Strauß S
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.