BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31123261)

  • 21. Different regulation of T-box genes Tbx4 and Tbx5 during limb development and limb regeneration.
    Khan P; Linkhart B; Simon HG
    Dev Biol; 2002 Oct; 250(2):383-92. PubMed ID: 12376111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lessons from the Mexican axolotl: amphibian limb regeneration and its impact on plastic surgery.
    Menger B; Reimers K; Kuhbier JW; Vogt PM
    Plast Reconstr Surg; 2010 Jun; 125(6):260e-261e. PubMed ID: 20517075
    [No Abstract]   [Full Text] [Related]  

  • 23. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration.
    Wu CH; Tsai MH; Ho CC; Chen CY; Lee HS
    BMC Genomics; 2013 Jul; 14():434. PubMed ID: 23815514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The axolotl genome and the evolution of key tissue formation regulators.
    Nowoshilow S; Schloissnig S; Fei JF; Dahl A; Pang AWC; Pippel M; Winkler S; Hastie AR; Young G; Roscito JG; Falcon F; Knapp D; Powell S; Cruz A; Cao H; Habermann B; Hiller M; Tanaka EM; Myers EW
    Nature; 2018 Feb; 554(7690):50-55. PubMed ID: 29364872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compatible limb patterning mechanisms in urodeles and anurans.
    Sessions SK; Gardiner DM; Bryant SV
    Dev Biol; 1989 Feb; 131(2):294-301. PubMed ID: 2912797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Introducing www.axolotl-omics.org - an integrated -omics data portal for the axolotl research community.
    Nowoshilow S; Tanaka EM
    Exp Cell Res; 2020 Sep; 394(1):112143. PubMed ID: 32540400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl.
    Zhu W; Pao GM; Satoh A; Cummings G; Monaghan JR; Harkins TT; Bryant SV; Randal Voss S; Gardiner DM; Hunter T
    Dev Biol; 2012 Oct; 370(1):42-51. PubMed ID: 22841627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishing a New Research Axolotl Colony.
    Yandulskaya AS; Monaghan JR
    Methods Mol Biol; 2023; 2562():27-39. PubMed ID: 36272066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying amphibian limb regeneration to human wound healing: a review.
    Menger B; Vogt PM; Kuhbier JW; Reimers K
    Ann Plast Surg; 2010 Nov; 65(5):504-10. PubMed ID: 20948421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The first report on circulating microRNAs at Pre- and Post-metamorphic stages of axolotls.
    Demircan T; Sibai M; Avşaroğlu ME; Altuntaş E; Ovezmyradov G
    Gene; 2021 Feb; 768():145258. PubMed ID: 33131713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in Decoding Axolotl Limb Regeneration.
    Haas BJ; Whited JL
    Trends Genet; 2017 Aug; 33(8):553-565. PubMed ID: 28648452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An interview with Elly Tanaka.
    Brown K
    Development; 2018 Jun; 145(11):. PubMed ID: 29884656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inducible genetic system for the axolotl.
    Whited JL; Lehoczky JA; Tabin CJ
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13662-7. PubMed ID: 22869739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Dynamic Landscapes of Circular RNAs in Axolotl, a Regenerative Medicine Model, with Implications for Early Phase of Limb Regeneration.
    Demircan T; Süzek BE
    OMICS; 2023 Nov; 27(11):526-535. PubMed ID: 37943672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration.
    Glotzer GL; Tardivo P; Tanaka EM
    Elife; 2022 May; 11():. PubMed ID: 35587651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep evolutionary origin of limb and fin regeneration.
    Darnet S; Dragalzew AC; Amaral DB; Sousa JF; Thompson AW; Cass AN; Lorena J; Pires ES; Costa CM; Sousa MP; Fröbisch NB; Oliveira G; Schneider PN; Davis MC; Braasch I; Schneider I
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15106-15115. PubMed ID: 31270239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A histological study of normal and pathological limb regeneration in the Mexican axolotl Ambystoma mexicanum.
    Bothe V; Mahlow K; Fröbisch NB
    J Exp Zool B Mol Dev Evol; 2021 Mar; 336(2):116-128. PubMed ID: 32394624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema.
    Stewart R; Rascón CA; Tian S; Nie J; Barry C; Chu LF; Ardalani H; Wagner RJ; Probasco MD; Bolin JM; Leng N; Sengupta S; Volkmer M; Habermann B; Tanaka EM; Thomson JA; Dewey CN
    PLoS Comput Biol; 2013; 9(3):e1002936. PubMed ID: 23505351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of heat-shock protein 70 during limb development and regeneration in the axolotl.
    Lévesque M; Guimond JC; Pilote M; Leclerc S; Moldovan F; Roy S
    Dev Dyn; 2005 Aug; 233(4):1525-34. PubMed ID: 15965983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration.
    Fei JF; Schuez M; Knapp D; Taniguchi Y; Drechsel DN; Tanaka EM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12501-12506. PubMed ID: 29087939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.