BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31123261)

  • 61. Anatomy of axolotl flank integument during limb bud development with special reference to a transcutaneous current predicting limb formation.
    Borgens RB; Callahan L; Rouleau MF
    J Exp Zool; 1987 Nov; 244(2):203-14. PubMed ID: 3430119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tracing the Origins of Axolotl Limb Regeneration.
    Rivera-Gonzalez GC; Morris SA
    Dev Cell; 2018 Dec; 47(6):675-677. PubMed ID: 30562504
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 2D and 3D Echocardiography in the Axolotl (Ambystoma Mexicanum).
    Dittrich A; Thygesen MM; Lauridsen H
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30582577
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Retinoid antagonists inhibit normal patterning during limb regeneration in the axolotl, Ambystoma mexicanum.
    Del Rincón SV; Scadding SR
    J Exp Zool; 2002 Apr; 292(5):435-43. PubMed ID: 11857478
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Isolation and characterization of axolotl NPDC-1 and its effects on retinoic acid receptor signaling.
    Theodosiou M; Monaghan JR; Spencer ML; Voss SR; Noonan DJ
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jun; 147(2):260-70. PubMed ID: 17331771
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thyroxine-induced metamorphosis in the axolotl (Ambystoma mexicanum).
    Coots PS; Seifert AW
    Methods Mol Biol; 2015; 1290():141-5. PubMed ID: 25740483
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of immunoglobulin
    Martinez-Barnetche J; Godoy-Lozano EE; Saint Remy-Hernández S; Pacheco-Olvera DL; Téllez-Sosa J; Valdovinos-Torres H; Pastelin-Palacios R; Mena H; Zambrano L; López-Macías C
    Front Immunol; 2023; 14():1039274. PubMed ID: 36776846
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (
    Öktem EK; Yazar M; Gulfidan G; Arga KY
    OMICS; 2019 Aug; 23(8):389-405. PubMed ID: 31305215
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution.
    Ye F; Zhang G; E W; Chen H; Yu C; Yang L; Fu Y; Li J; Fu S; Sun Z; Fei L; Guo Q; Wang J; Xiao Y; Wang X; Zhang P; Ma L; Ge D; Xu S; Caballero-Pérez J; Cruz-Ramírez A; Zhou Y; Chen M; Fei JF; Han X; Guo G
    Nat Commun; 2022 Jul; 13(1):4228. PubMed ID: 35869072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expression patterns of Fgf-8 during development and limb regeneration of the axolotl.
    Han MJ; An JY; Kim WS
    Dev Dyn; 2001 Jan; 220(1):40-8. PubMed ID: 11146506
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of the effects of vitamin A on limb development and regeneration in the axolotl, Ambystoma mexicanum.
    Scadding SR; Maden M
    J Embryol Exp Morphol; 1986 Feb; 91():19-34. PubMed ID: 3711785
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An experimental analysis of regional organization in the regenerating fore limb of the axolotl (Ambystoma mexicanum).
    FABER J
    Arch Biol (Liege); 1960; 71():1-72. PubMed ID: 13821173
    [No Abstract]   [Full Text] [Related]  

  • 73. The Meis homeoprotein regulates the axolotl Prod 1 promoter during limb regeneration.
    Shaikh N; Gates PB; Brockes JP
    Gene; 2011 Sep; 484(1-2):69-74. PubMed ID: 21684325
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multi-species atlas resolves an axolotl limb development and regeneration paradox.
    Zhong J; Aires R; Tsissios G; Skoufa E; Brandt K; Sandoval-Guzmán T; Aztekin C
    Nat Commun; 2023 Oct; 14(1):6346. PubMed ID: 37816738
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum.
    Tassava RA; Mendenhall L; Apseloff G; Gerber N
    J Exp Zool; 2002 Sep; 293(4):384-94. PubMed ID: 12210121
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [THE RESTORATION OF REGENERATIVE CAPACITY OF THE EXTREMITIES IN THE AXOLOTL, INHIBITED BY X-IRRADIATION, BY MEANS OF NUCLEIC ACIDS].
    POLEZHAEV LV; TEPLITS NA; TUCHKOVA SIa
    Dokl Akad Nauk SSSR; 1964 Nov; 159():682-5. PubMed ID: 14311043
    [No Abstract]   [Full Text] [Related]  

  • 77. The yeast two hybrid system in a screen for proteins interacting with axolotl (Ambystoma mexicanum) Msx1 during early limb regeneration.
    Abuqarn M; Allmeling C; Amshoff I; Menger B; Nasser I; Vogt PM; Reimers K
    Biochim Biophys Acta; 2011 Jul; 1814(7):843-9. PubMed ID: 21571103
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Axolotl (Ambystoma mexicanum) limb and tail amputation.
    Kragl M; Tanaka EM
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5267. PubMed ID: 20147243
    [No Abstract]   [Full Text] [Related]  

  • 79. Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue.
    Lovely AM; Duerr TJ; Stein DF; Mun ET; Monaghan JR
    Methods Mol Biol; 2023; 2562():109-122. PubMed ID: 36272070
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gain-of-function assays in the axolotl (Ambystoma mexicanum) to identify signaling pathways that induce and regulate limb regeneration.
    Lee J; Aguilar C; Gardiner D
    Methods Mol Biol; 2013; 1037():401-17. PubMed ID: 24029949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.