These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31123306)

  • 21. Optical Characteristics of ZnS Passivated CdSe/CdS Quantum Dots for High Photostability and Lasing.
    Wang X; Yu J; Chen R
    Sci Rep; 2018 Nov; 8(1):17323. PubMed ID: 30470827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning Hole and Electron Transfer from Photoexcited CdSe Quantum Dots to Phenol Derivatives: Effect of Electron-Donating and -Withdrawing Moieties.
    Debnath T; Sebastian D; Maiti S; Ghosh HN
    Chemistry; 2017 May; 23(30):7306-7314. PubMed ID: 28345273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-Regulated Hole and Triplet Energy Transfer from CdSe Quantum Dots to Organic Acceptors for Enhancing Singlet Oxygen Generation.
    Luo S; Zhang Y; Zhu Y; Wang XJ; Ran X; He Y; Kuang Y; Chi Z; Guo L
    Inorg Chem; 2023 Nov; 62(46):19087-19095. PubMed ID: 37934916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots.
    Torchynska TV
    Nanotechnology; 2009 Mar; 20(9):095401. PubMed ID: 19417487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity.
    Duong HD; Yang S; Seo YW; Rhee JI
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1568-1576. PubMed ID: 29448631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
    Torchynska TV; Polupan G; Vega Macotela LG
    J Photochem Photobiol B; 2017 May; 170():309-313. PubMed ID: 28477576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the rate of electron transfer between a quantum dot and a tri-ruthenium molecular cluster by tuning the chemistry of the interface.
    Morris-Cohen AJ; Aruda KO; Rasmussen AM; Canzi G; Seideman T; Kubiak CP; Weiss EA
    Phys Chem Chem Phys; 2012 Oct; 14(40):13794-801. PubMed ID: 22588225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots.
    Grimaldi G; Geuchies JJ; van der Stam W; du Fossé I; Brynjarsson B; Kirkwood N; Kinge S; Siebbeles LDA; Houtepen AJ
    Nano Lett; 2019 May; 19(5):3002-3010. PubMed ID: 30938530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.
    Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL
    ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production.
    Huang J; Mulfort KL; Du P; Chen LX
    J Am Chem Soc; 2012 Oct; 134(40):16472-5. PubMed ID: 22989083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast separation of multiexcitons within core/shell quantum dot hybrid systems.
    Trinh PT; Hasenstab S; Braun M; Wachtveitl J
    Nanoscale; 2022 Mar; 14(9):3561-3567. PubMed ID: 35230365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermittent electron transfer activity from single CdSe/ZnS quantum dots.
    Issac A; Jin S; Lian T
    J Am Chem Soc; 2008 Aug; 130(34):11280-1. PubMed ID: 18680292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
    Ratnesh RK; Mehata MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.
    Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.
    Chung H; Cho KS; Koh WK; Kim D; Kim J
    Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple.
    Bharadwaj K; Koley S; Jana S; Ghosh S
    Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose.
    Duong HD; Rhee JI
    Talanta; 2007 Oct; 73(5):899-905. PubMed ID: 19073118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auger-assisted electron transfer from photoexcited semiconductor quantum dots.
    Zhu H; Yang Y; Hyeon-Deuk K; Califano M; Song N; Wang Y; Zhang W; Prezhdo OV; Lian T
    Nano Lett; 2014 Mar; 14(3):1263-9. PubMed ID: 24359156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.