These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31123532)

  • 1. Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability.
    Estes JP; Mukherjee B; Taylor JMG
    Stat Biosci; 2018 Dec; 10(3):568-586. PubMed ID: 31123532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources.
    Chatterjee N; Chen YH; Maas P; Carroll RJ
    J Am Stat Assoc; 2016 Mar; 111(513):107-117. PubMed ID: 27570323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency.
    Mukherjee B; Chatterjee N
    Biometrics; 2008 Sep; 64(3):685-694. PubMed ID: 18162111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-inference framework to integrate multiple external models into a current study.
    Gu T; Taylor JMG; Mukherjee B
    Biostatistics; 2023 Apr; 24(2):406-424. PubMed ID: 34269371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiparametric estimation of the transformation model by leveraging external aggregate data in the presence of population heterogeneity.
    Cheng YJ; Liu YC; Tsai CY; Huang CY
    Biometrics; 2023 Sep; 79(3):1996-2009. PubMed ID: 36314375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach.
    Sheng Y; Sun Y; Huang CY; Kim MO
    Biometrics; 2022 Jun; 78(2):679-690. PubMed ID: 33528028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical Bayes Gaussian likelihood estimation of exposure distributions from pooled samples in human biomonitoring.
    Li X; Kuk AY; Xu J
    Stat Med; 2014 Dec; 33(28):4999-5014. PubMed ID: 25213192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias correction for multiple covariate analysis using empirical bayesian estimation in mixed-effects models for longitudinal data.
    Li Y; Yang Y; Xu XS; Yuan M;
    Comput Biol Chem; 2022 Aug; 99():107697. PubMed ID: 35636264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous selection and incorporation of consistent external aggregate information.
    Huang Y; Huang CY; Kim MO
    Stat Med; 2023 Dec; 42(30):5630-5645. PubMed ID: 37788982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating external summary information in the presence of prior probability shift: an application to assessing essential hypertension.
    Chen C; Han P; Chen S; Shardell M; Qin J
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39248121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pairwise likelihood augmented Cox estimator for left-truncated data.
    Wu F; Kim S; Qin J; Saran R; Li Y
    Biometrics; 2018 Mar; 74(1):100-108. PubMed ID: 28853158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
    Xie Y; Zhang B
    Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified approach for synthesizing population-level covariate effect information in semiparametric estimation with survival data.
    Huang CY; Qin J
    Stat Med; 2020 May; 39(10):1573-1590. PubMed ID: 32073677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust data integration from multiple external sources for generalized linear models with binary outcomes.
    Choi K; Taylor JMG; Han P
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38364808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging External Aggregated Information for the Marginal Accelerated Failure Time Model.
    Xie P; Ding J; Wang X
    Stat Med; 2024 Nov; 43(27):5203-5216. PubMed ID: 39379012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quick and accurate method for the estimation of covariate effects based on empirical Bayes estimates in mixed-effects modeling: Correction of bias due to shrinkage.
    Yuan M; Xu XS; Yang Y; Xu J; Huang X; Tao F; Zhao L; Zhang L; Pinheiro J
    Stat Methods Med Res; 2019 Dec; 28(12):3568-3578. PubMed ID: 30409080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained empirical-likelihood confidence regions in nonignorable covariate-missing data problems.
    Xie Y; Zhang B
    Stat Med; 2019 Feb; 38(3):452-479. PubMed ID: 30311246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning from a lot: Empirical Bayes for high-dimensional model-based prediction.
    van de Wiel MA; Te Beest DE; Münch MM
    Scand Stat Theory Appl; 2019 Mar; 46(1):2-25. PubMed ID: 31007342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical Bayes estimation for combinations of multivariate bioassays.
    Chen DG; Carter EM; Hubert JJ; Kim PT
    Biometrics; 1999 Dec; 55(4):1038-43. PubMed ID: 11315045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic data integration framework to leverage external summary-level information from heterogeneous populations.
    Gu T; Taylor JMG; Mukherjee B
    Biometrics; 2023 Dec; 79(4):3831-3845. PubMed ID: 36876883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.