BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31123718)

  • 1. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B
    Yang J; Minkler P; Grove D; Wang R; Willard B; Dweik R; Hine C
    Commun Biol; 2019; 2():194. PubMed ID: 31123718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin B6 nutritional status and cellular availability of pyridoxal 5'-phosphate govern the function of the transsulfuration pathway's canonical reactions and hydrogen sulfide production via side reactions.
    Gregory JF; DeRatt BN; Rios-Avila L; Ralat M; Stacpoole PW
    Biochimie; 2016 Jul; 126():21-6. PubMed ID: 26765812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin B-6 restriction reduces the production of hydrogen sulfide and its biomarkers by the transsulfuration pathway in cultured human hepatoma cells.
    DeRatt BN; Ralat MA; Kabil O; Chi YY; Banerjee R; Gregory JF
    J Nutr; 2014 Oct; 144(10):1501-8. PubMed ID: 25165392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-independent catabolism of cysteine with pyridoxal-5'-phosphate.
    Mulay P; Chen C; Krishna V
    Sci Rep; 2023 Jan; 13(1):312. PubMed ID: 36609609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfhemoglobin formation in human erythrocytes by cystalysin, an L-cysteine desulfhydrase from Treponema denticola.
    Kurzban GP; Chu L; Ebersole JL; Holt SC
    Oral Microbiol Immunol; 1999 Jun; 14(3):153-64. PubMed ID: 10495709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production.
    Huang S; Chua JH; Yew WS; Sivaraman J; Moore PK; Tan CH; Deng LW
    J Mol Biol; 2010 Feb; 396(3):708-18. PubMed ID: 19961860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase.
    Matsui T; Sugiyama R; Sakanashi K; Tamura Y; Iida M; Nambu Y; Higuchi T; Suematsu M; Ikeda-Saito M
    J Biol Chem; 2018 Oct; 293(43):16931-16939. PubMed ID: 30237172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen sulfide-producing oral pathogen,
    Kezuka Y; Ishida T; Yoshida Y; Nonaka T
    Biochem J; 2018 Feb; 475(4):733-748. PubMed ID: 29343611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus.
    Kezuka Y; Yoshida Y; Nonaka T
    Proteins; 2012 Oct; 80(10):2447-58. PubMed ID: 22674431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase or decrease hydrogen sulfide exert opposite lipolysis, but reduce global insulin resistance in high fatty diet induced obese mice.
    Geng B; Cai B; Liao F; Zheng Y; Zeng Q; Fan X; Gong Y; Yang J; Cui QH; Tang C; Xu GH
    PLoS One; 2013; 8(9):e73892. PubMed ID: 24058499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Kinetic Insight into the Biosynthesis of H
    Mothersole RG; Wolthers KR
    Biochemistry; 2019 Aug; 58(34):3592-3603. PubMed ID: 31398016
    [No Abstract]   [Full Text] [Related]  

  • 12. Biogenesis of Hydrogen Sulfide and Thioethers by Cystathionine Beta-Synthase.
    Majtan T; Krijt J; Sokolová J; Křížková M; Ralat MA; Kent J; Gregory JF; Kožich V; Kraus JP
    Antioxid Redox Signal; 2018 Feb; 28(4):311-323. PubMed ID: 28874062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and genomic evidence of cysteine degradation and aerobic hydrogen sulfide production in freshwater bacteria.
    Tran PQ; Bachand SC; Hotvedt JC; Kieft K; McDaniel EA; McMahon KD; Anantharaman K
    mSystems; 2023 Jun; 8(3):e0020123. PubMed ID: 37285121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sulfide chemical biology: pathophysiological roles and detection.
    Kolluru GK; Shen X; Bir SC; Kevil CG
    Nitric Oxide; 2013 Nov; 35():5-20. PubMed ID: 23850632
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Yadav PK; Vitvitsky V; Kim H; White A; Cho US; Banerjee R
    J Biol Chem; 2019 Jul; 294(28):11011-11022. PubMed ID: 31160338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulfide formation in experimental model of acute pancreatitis.
    Bronowicka-Adamska P; Hutsch T; Gawryś-Kopczyńska M; Maksymiuk K; Wróbel M
    Acta Biochim Pol; 2019 Dec; 66(4):611-618. PubMed ID: 31893496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.
    Nakamura S; Shioya K; Hiraoka BY; Suzuki N; Hoshino T; Fujiwara T; Yoshinari N; Ansai T; Yoshida A
    Microbiology (Reading); 2018 Apr; 164(4):529-539. PubMed ID: 29488863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage.
    Wang XH; Wang F; You SJ; Cao YJ; Cao LD; Han Q; Liu CF; Hu LF
    Cell Signal; 2013 Nov; 25(11):2255-62. PubMed ID: 23872072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(-) production and evidence of pancreatic and lung toxicity.
    Roman HB; Hirschberger LL; Krijt J; Valli A; Kožich V; Stipanuk MH
    Antioxid Redox Signal; 2013 Oct; 19(12):1321-36. PubMed ID: 23350603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.