BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31123771)

  • 1. Moving forward one step back at a time: reversibility during homologous recombination.
    Piazza A; Heyer WD
    Curr Genet; 2019 Dec; 65(6):1333-1340. PubMed ID: 31123771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Analysis of D-Loop Extension and DNA Strand Displacement Synthesis.
    Kwon Y; Sung P
    Methods Mol Biol; 2021; 2153():87-99. PubMed ID: 32840774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae.
    Piazza A; Rajput P; Heyer WD
    Methods Mol Biol; 2021; 2153():535-554. PubMed ID: 32840803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics and Single-Molecule Interrogation of DNA Recombination.
    Bell JC; Kowalczykowski SC
    Annu Rev Biochem; 2016 Jun; 85():193-226. PubMed ID: 27088880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring homology search during DNA double-strand break repair in vivo.
    Renkawitz J; Lademann CA; Kalocsay M; Jentsch S
    Mol Cell; 2013 Apr; 50(2):261-72. PubMed ID: 23523370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways and assays for DNA double-strand break repair by homologous recombination.
    Li J; Sun H; Huang Y; Wang Y; Liu Y; Chen X
    Acta Biochim Biophys Sin (Shanghai); 2019 Sep; 51(9):879-889. PubMed ID: 31294447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments.
    Veaute X; Jeusset J; Soustelle C; Kowalczykowski SC; Le Cam E; Fabre F
    Nature; 2003 May; 423(6937):309-12. PubMed ID: 12748645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast.
    Wiest NE; Houghtaling S; Sanchez JC; Tomkinson AE; Osley MA
    Nucleic Acids Res; 2017 Jun; 45(10):5887-5900. PubMed ID: 28398510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination.
    Ye Y; Kirkham-McCarthy L; Lahue RS
    DNA Repair (Amst); 2016 Jul; 43():1-8. PubMed ID: 27173583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of Saccharomyces cerevisiae Homologous Recombination Proteins Dmc1 and Rdh54/Tid1 and a Fluorescent D-Loop Assay.
    Chan YL; Bishop DK
    Methods Enzymol; 2018; 600():307-320. PubMed ID: 29458764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates.
    Keyamura K; Arai K; Hishida T
    PLoS Genet; 2016 Jul; 12(7):e1006136. PubMed ID: 27390022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KEOPS complex promotes homologous recombination via DNA resection.
    He MH; Liu JC; Lu YS; Wu ZJ; Liu YY; Wu Z; Peng J; Zhou JQ
    Nucleic Acids Res; 2019 Jun; 47(11):5684-5697. PubMed ID: 30937455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of DNA Double-Strand Breaks in Yeast.
    Gnügge R; Oh J; Symington LS
    Methods Enzymol; 2018; 600():1-24. PubMed ID: 29458754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All who wander are not lost: the search for homology during homologous recombination.
    Hu J; Crickard JB
    Biochem Soc Trans; 2024 Feb; 52(1):367-377. PubMed ID: 38323621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair.
    Saponaro M; Callahan D; Zheng X; Krejci L; Haber JE; Klein HL; Liberi G
    PLoS Genet; 2010 Feb; 6(2):e1000858. PubMed ID: 20195513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Proximity Ligation-Based Method for Quantitative Measurement of D-Loop Extension in S. cerevisiae.
    Piazza A; Koszul R; Heyer WD
    Methods Enzymol; 2018; 601():27-44. PubMed ID: 29523235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51; implications for crossover control in meiotic recombination.
    Mazina OM; Mazin AV; Nakagawa T; Kolodner RD; Kowalczykowski SC
    Cell; 2004 Apr; 117(1):47-56. PubMed ID: 15066281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.