These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
603 related articles for article (PubMed ID: 31123844)
1. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Poorinmohammad N; Bagheban-Shemirani R; Hamedi J Antonie Van Leeuwenhoek; 2019 Oct; 112(10):1477-1499. PubMed ID: 31123844 [TBL] [Abstract][Full Text] [Related]
2. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. Letzel AC; Pidot SJ; Hertweck C BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095 [TBL] [Abstract][Full Text] [Related]
3. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321 [TBL] [Abstract][Full Text] [Related]
4. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Russell AH; Truman AW Comput Struct Biotechnol J; 2020; 18():1838-1851. PubMed ID: 32728407 [TBL] [Abstract][Full Text] [Related]
5. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797 [TBL] [Abstract][Full Text] [Related]
6. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Russell AH; Vior NM; Hems ES; Lacret R; Truman AW Chem Sci; 2021 Sep; 12(35):11769-11778. PubMed ID: 34659714 [TBL] [Abstract][Full Text] [Related]
7. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. Malit JJL; Wu C; Liu LL; Qian PY Front Microbiol; 2021; 12():635389. PubMed ID: 33995295 [TBL] [Abstract][Full Text] [Related]
8. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135 [TBL] [Abstract][Full Text] [Related]
9. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in Al Mamun A; Alam K; Koly FA; Showline Chaity F; Ferdous J; Islam S J Asian Nat Prod Res; 2024 Aug; ():1-14. PubMed ID: 39140768 [TBL] [Abstract][Full Text] [Related]
10. Omics-based strategies to discover novel classes of RiPP natural products. Kloosterman AM; Medema MH; van Wezel GP Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297 [TBL] [Abstract][Full Text] [Related]
11. Novel approach in whole genome mining and transcriptome analysis reveal conserved RiPPs in Trichoderma spp. Vignolle GA; Mach RL; Mach-Aigner AR; Derntl C BMC Genomics; 2020 Mar; 21(1):258. PubMed ID: 32216757 [TBL] [Abstract][Full Text] [Related]
12. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems. Yi Y; Liang L; de Jong A; Kuipers OP Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812 [TBL] [Abstract][Full Text] [Related]
13. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223 [TBL] [Abstract][Full Text] [Related]
14. The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study. Figueiredo G; Gomes M; Covas C; Mendo S; Caetano T Microb Ecol; 2022 Feb; 83(2):470-481. PubMed ID: 33987687 [TBL] [Abstract][Full Text] [Related]
15. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining. Agrawal P; Amir S; Deepak ; Barua D; Mohanty D J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022 [TBL] [Abstract][Full Text] [Related]
16. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs). Zhong Z; He B; Li J; Li YX Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669 [TBL] [Abstract][Full Text] [Related]
17. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides. Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825 [TBL] [Abstract][Full Text] [Related]
18. Metabolome-guided genome mining of RiPP natural products. Zdouc MM; van der Hooft JJJ; Medema MH Trends Pharmacol Sci; 2023 Aug; 44(8):532-541. PubMed ID: 37391295 [TBL] [Abstract][Full Text] [Related]
19. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Kessler SC; Chooi YH Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394 [TBL] [Abstract][Full Text] [Related]
20. A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif. Wang S; Lin S; Fang Q; Gyampoh R; Lu Z; Gao Y; Clarke DJ; Wu K; Trembleau L; Yu Y; Kyeremeh K; Milne BF; Tabudravu J; Deng H Nat Commun; 2022 Aug; 13(1):5044. PubMed ID: 36028509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]