These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31124099)

  • 1. Ligand-Directed N-Sulfonyl Pyridone Chemistry for Selective Native Protein Labeling and Imaging in Live Cell.
    Masuda M; Matsuo K; Hamachi I
    Methods Mol Biol; 2019; 2008():203-224. PubMed ID: 31124099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live-Cell Protein Sulfonylation Based on Proximity-driven N-Sulfonyl Pyridone Chemistry.
    Matsuo K; Nishikawa Y; Masuda M; Hamachi I
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):659-662. PubMed ID: 29193552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Chemical Modification of Proteins.
    Sakamoto S; Hamachi I
    Anal Sci; 2019 Jan; 35(1):5-27. PubMed ID: 30318491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.
    Hayashi T; Hamachi I
    Acc Chem Res; 2012 Sep; 45(9):1460-9. PubMed ID: 22680975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems.
    Tamura T; Song Z; Amaike K; Lee S; Yin S; Kiyonaka S; Hamachi I
    J Am Chem Soc; 2017 Oct; 139(40):14181-14191. PubMed ID: 28915034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein organic chemistry and applications for labeling and engineering in live-cell systems.
    Takaoka Y; Ojida A; Hamachi I
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4088-106. PubMed ID: 23426903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity-labeling-based introduction of a reactive handle for natural protein modification.
    Wakabayashi H; Miyagawa M; Koshi Y; Takaoka Y; Tsukiji S; Hamachi I
    Chem Asian J; 2008 Jul; 3(7):1134-9. PubMed ID: 18494012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins.
    Takaoka Y; Nishikawa Y; Hashimoto Y; Sasaki K; Hamachi I
    Chem Sci; 2015 May; 6(5):3217-3224. PubMed ID: 28706692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications.
    Tsukiji S; Hamachi I
    Curr Opin Chem Biol; 2014 Aug; 21():136-43. PubMed ID: 25129055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells.
    Fujishima SH; Yasui R; Miki T; Ojida A; Hamachi I
    J Am Chem Soc; 2012 Mar; 134(9):3961-4. PubMed ID: 22352855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide.
    Tamura T; Ueda T; Goto T; Tsukidate T; Shapira Y; Nishikawa Y; Fujisawa A; Hamachi I
    Nat Commun; 2018 May; 9(1):1870. PubMed ID: 29760386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-directed tosyl chemistry for selective native protein labeling in vitro, in cells, and in vivo.
    Tsukiji S; Hamachi I
    Methods Mol Biol; 2015; 1266():243-63. PubMed ID: 25560080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag.
    Segal I; Nachmias D; Konig A; Alon A; Arbely E; Elia N
    BMC Biol; 2020 Jan; 18(1):5. PubMed ID: 31937312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells.
    Chen X; Li F; Wu YW
    Methods Mol Biol; 2019; 2008():191-202. PubMed ID: 31124098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells.
    Tamura T; Tsukiji S; Hamachi I
    J Am Chem Soc; 2012 Feb; 134(4):2216-26. PubMed ID: 22220821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells.
    Amaike K; Tamura T; Hamachi I
    Chem Commun (Camb); 2017 Nov; 53(88):11972-11983. PubMed ID: 29026906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A solid-phase affinity labeling method for target-selective isolation and modification of proteins.
    Kuwahara D; Hasumi T; Kaneko H; Unno M; Takahashi D; Toshima K
    Chem Commun (Camb); 2014 Dec; 50(98):15601-4. PubMed ID: 25360454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
    Jung D; Min K; Jung J; Jang W; Kwon Y
    Mol Biosyst; 2013 May; 9(5):862-72. PubMed ID: 23318293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells.
    Dai SY; Yang D
    J Am Chem Soc; 2020 Oct; 142(40):17156-17166. PubMed ID: 32870680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry.
    George JT; Srivatsan SG
    Methods; 2017 May; 120():28-38. PubMed ID: 28215631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.