BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31124366)

  • 1. Timely Addition of Glutathione for Its Interaction with Deoxypentosone To Inhibit the Aqueous Maillard Reaction and Browning of Glycylglycine-Arabinose System.
    Lu S; Cui H; Zhan H; Hayat K; Jia C; Hussain S; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Jun; 67(23):6585-6593. PubMed ID: 31124366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence and Conversion Mechanism for Selective Preparation of a Xylose-Diglycine Amadori Compound and a Cross-linking Product in an Aqueous Maillard Reaction.
    Ma M; Cui H; Wang Z; Hayat K; Jia C; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Dec; 69(49):14915-14925. PubMed ID: 34856795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Mechanism of (-)-Epigallocatechin Gallate Indicating the Critical Formation Conditions of Amadori Compound during an Aqueous Maillard Reaction.
    Yu X; Cui H; Hayat K; Hussain S; Jia C; Zhang SL; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Mar; 67(12):3412-3422. PubMed ID: 30827106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product.
    Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine, Diglycine, and Triglycine Exhibit Different Reactivities in the Formation and Degradation of Amadori Compounds.
    Xia X; Zhai Y; Cui H; Zhang H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(47):14907-14918. PubMed ID: 36378039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of (-)-Epigallocatechin Gallate and Deoxyosones Blocking the Subsequent Maillard Reaction and Improving the Yield of
    Yu J; Cui H; Tang W; Hayat K; Hussain S; Tahir MU; Gao Y; Zhang X; Ho CT
    J Agric Food Chem; 2020 Feb; 68(6):1714-1724. PubMed ID: 31957424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of N-(1-Deoxy-Α-D-Xylulos-1-Yl)-Glutamic Acid via Aqueous Maillard Reaction Coupled with Vacuum Dehydration and Its Flavor Formation Through Thermal Treatment of Baking Process.
    Xu M; Cui H; Sun F; Jia C; Zhang SL; Hussain S; Tahir MU; Zhang X; Hayat K
    J Food Sci; 2019 Aug; 84(8):2171-2180. PubMed ID: 31313307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation mechanism of cross-linking Maillard compounds in peptide-xylose systems.
    Liu P; Zhang X; Huang M; Song S; Nsor-Atindana J
    J Pept Sci; 2012 Oct; 18(10):626-34. PubMed ID: 22933421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen is not required for the browning and crosslinking of protein by pentoses: relevance to Maillard reactions in vivo.
    Litchfield JE; Thorpe SR; Baynes JW
    Int J Biochem Cell Biol; 1999 Nov; 31(11):1297-305. PubMed ID: 10605822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Dependent Catalysis of Glycylglycine on Its Amadori Compound Degradation to Deoxyosone.
    Cui H; Ma M; Wang Z; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(27):8409-8416. PubMed ID: 35771137
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Tang W; Cui H; Sun F; Yu X; Hayat K; Hussain S; Tahir MU; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(32):8994-9001. PubMed ID: 31347366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Added l-Cysteine with 2-Threityl-thiazolidine-4-carboxylic Acid Derived from the Xylose-Cysteine System Affecting Its Maillard Browning.
    Zhai Y; Cui H; Hayat K; Hussain S; Tahir MU; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(31):8632-8640. PubMed ID: 31309828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Formation of
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Nov; 71(46):17874-17885. PubMed ID: 37939699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.
    Xu H; Zhang X; Karangwa E; Xia S
    J Sci Food Agric; 2017 Sep; 97(12):4210-4218. PubMed ID: 28244161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the C-Ring Structure of Flavonoids on the Yield of Adducts Formed by the Linkage of the Active Site at the A-Ring and Amadori Rearrangement Products during the Maillard Intermediate Preparation.
    Chen P; Cui H; Feng L; Yu J; Hayat K; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2022 Mar; 70(10):3280-3288. PubMed ID: 35245065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(29):9095-9105. PubMed ID: 35838405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Fluorescent Maillard Reaction Intermediates of Peptide and Glucose during Thermal Reaction and Its Mechanism.
    Xia X; Zhou T; Yu J; Cui H; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Jun; 71(22):8569-8579. PubMed ID: 37232325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine-Xylose Amadori Compound Formation Tracing through Maillard Browning Inhibition by 2-Threityl-thiazolidine-4-carboxylic Acid Formation from Deoxyosone and Exogenous Cysteine.
    Wei S; Cui H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Sep; 70(38):12164-12171. PubMed ID: 36124743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.