These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31124368)

  • 1. Tagged Core-Satellite Nanoassemblies: Role of Assembling Sequence on Surface-Enhanced Raman Scattering (SERS) Performance.
    Dey P; Thurecht KJ; Fredericks PM; Blakey I
    Appl Spectrosc; 2019 Dec; 73(12):1428-1435. PubMed ID: 31124368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS.
    Dey P; Baumann V; Rodríguez-Fernández J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy.
    Dey P; Tabish TA; Mosca S; Palombo F; Matousek P; Stone N
    Small; 2020 Mar; 16(10):e1906780. PubMed ID: 31997560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2014 Mar; 30(8):2249-58. PubMed ID: 24548062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled hyperbranched polymer-gold nanoparticle hybrids: understanding the effect of polymer coverage on assembly size and SERS performance.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2013 Jan; 29(2):525-33. PubMed ID: 23244573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering.
    Trinh HD; Kim S; Yun S; Huynh LTM; Yoon S
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1805-1814. PubMed ID: 38001021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering.
    Rong Z; Xiao R; Wang C; Wang D; Wang S
    Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures.
    Gandra N; Abbas A; Tian L; Singamaneni S
    Nano Lett; 2012 May; 12(5):2645-51. PubMed ID: 22533719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anisotropic nanobox based core-shell-satellite nanoassembly of multiple SERS enhancement with heterogeneous interface for stroke marker determination.
    Wang WB; Li JJ; Weng GJ; Zhu J; Guo YB; Zhao JW
    J Colloid Interface Sci; 2023 Oct; 647():81-92. PubMed ID: 37245272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers.
    Dey P; Zhu S; Thurecht KJ; Fredericks PM; Blakey I
    J Mater Chem B; 2014 May; 2(19):2827-2837. PubMed ID: 32261477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-Satellite Nanoassemblies as SPR/SERS Dual-Mode Plasmonic Sensors for Sensitively Detecting Ractopamine in Complex Media.
    Zheng L; Hu F; Zhao Y; Zhu J; Wang X; Su M; Liu H
    J Agric Food Chem; 2023 Dec; 71(51):20793-20800. PubMed ID: 38095450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances.
    Xiong W; Sikdar D; Yap LW; Premaratne M; Li X; Cheng W
    Nanoscale; 2015 Feb; 7(8):3445-52. PubMed ID: 25644681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au-Protected Ag Core/Satellite Nanoassemblies for Excellent Extra-/Intracellular Surface-Enhanced Raman Scattering Activity.
    Zhang Z; Bando K; Taguchi A; Mochizuki K; Sato K; Yasuda H; Fujita K; Kawata S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44027-44037. PubMed ID: 29171749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic gold nanoassembly: a study on polarization-dependent and polarization-selective surface-enhanced Raman scattering.
    Hossain MK; Huang GG; Tanaka Y; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4268-76. PubMed ID: 25572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures.
    Wu LA; Li WE; Lin DZ; Chen YF
    Sci Rep; 2017 Oct; 7(1):13066. PubMed ID: 29026173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colour and SERS patterning using core-satellite nanoassemblies.
    Lee S; Kim M; Yoon S
    Chem Commun (Camb); 2019 Jan; 55(10):1466-1469. PubMed ID: 30644479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.