These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31124545)
1. Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Garibay SJ; Farha OK; DeCoste JB Chem Commun (Camb); 2019 Jun; 55(49):7005-7008. PubMed ID: 31124545 [TBL] [Abstract][Full Text] [Related]
2. Detoxification of Chemical Warfare Agents Using a Zr Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019 [TBL] [Abstract][Full Text] [Related]
3. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework. Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195 [TBL] [Abstract][Full Text] [Related]
4. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks. Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999 [TBL] [Abstract][Full Text] [Related]
5. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs. Ghasempour H; Morsali A Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398 [TBL] [Abstract][Full Text] [Related]
6. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. Liao Y; Sheridan T; Liu J; Farha O; Hupp J ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064 [TBL] [Abstract][Full Text] [Related]
7. Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant. Li S; Zhang H; Wu G; Wu J; Hou H Dalton Trans; 2023 May; 52(20):6899-6905. PubMed ID: 37158285 [TBL] [Abstract][Full Text] [Related]
8. Insights into Catalytic Hydrolysis of Organophosphonates at M-OH Sites of Azolate-Based Metal Organic Frameworks. Mian MR; Chen H; Cao R; Kirlikovali KO; Snurr RQ; Islamoglu T; Farha OK J Am Chem Soc; 2021 Jul; 143(26):9893-9900. PubMed ID: 34160219 [TBL] [Abstract][Full Text] [Related]
9. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. Liu Y; Moon SY; Hupp JT; Farha OK ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030 [TBL] [Abstract][Full Text] [Related]
10. High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. Palomba JM; Harvey SP; Kalaj M; Pimentel BR; DeCoste JB; Peterson GW; Cohen SM ACS Appl Mater Interfaces; 2020 Apr; 12(13):14672-14677. PubMed ID: 31961131 [TBL] [Abstract][Full Text] [Related]
11. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. Luo HB; Lin FR; Liu ZY; Kong YR; Idrees KB; Liu Y; Zou Y; Farha OK; Ren XM ACS Appl Mater Interfaces; 2023 Jan; 15(2):2933-2939. PubMed ID: 36602325 [TBL] [Abstract][Full Text] [Related]
12. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Islamoglu T; Ortuño MA; Proussaloglou E; Howarth AJ; Vermeulen NA; Atilgan A; Asiri AM; Cramer CJ; Farha OK Angew Chem Int Ed Engl; 2018 Feb; 57(7):1949-1953. PubMed ID: 29314562 [TBL] [Abstract][Full Text] [Related]
13. Microwave-assisted activation and modulator removal in zirconium MOFs for buffer-free CWA hydrolysis. Kalinovskyy Y; Cooper NJ; Main MJ; Holder SJ; Blight BA Dalton Trans; 2017 Nov; 46(45):15704-15709. PubMed ID: 29094739 [TBL] [Abstract][Full Text] [Related]
14. Water stabilization of Zr Deria P; Chung YG; Snurr RQ; Hupp JT; Farha OK Chem Sci; 2015 Sep; 6(9):5172-5176. PubMed ID: 30155009 [TBL] [Abstract][Full Text] [Related]
15. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks. Momeni MR; Cramer CJ ACS Appl Mater Interfaces; 2018 Jun; 10(22):18435-18439. PubMed ID: 29774742 [TBL] [Abstract][Full Text] [Related]
16. Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. Kirlikovali KO; Chen Z; Islamoglu T; Hupp JT; Farha OK ACS Appl Mater Interfaces; 2020 Apr; 12(13):14702-14720. PubMed ID: 31951378 [TBL] [Abstract][Full Text] [Related]
17. Metal-Organic Framework (MOF)-Based Materials as Heterogeneous Catalysts for C-H Bond Activation. Liu M; Wu J; Hou H Chemistry; 2019 Feb; 25(12):2935-2948. PubMed ID: 30264533 [TBL] [Abstract][Full Text] [Related]
18. Are Zr₆-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Mondloch JE; Katz MJ; Planas N; Semrouni D; Gagliardi L; Hupp JT; Farha OK Chem Commun (Camb); 2014 Aug; 50(64):8944-6. PubMed ID: 24974960 [TBL] [Abstract][Full Text] [Related]
19. Tuning the Lewis acidity of metal-organic frameworks for enhanced catalysis. Devulapalli VSD; Richard M; Luo TY; De Souza ML; Rosi NL; Borguet E Dalton Trans; 2021 Mar; 50(9):3116-3120. PubMed ID: 33565539 [TBL] [Abstract][Full Text] [Related]
20. A MOFs/MIPs@GAs Ternary Composite Catalytic System with Graphene Oxide Aerogels as the Multifunctional Skeleton for High-Efficiency Detoxification of Organophosphate Nerve Agents in Pure Water. Niu Y; Jiang P; Guo T ACS Appl Mater Interfaces; 2024 Sep; 16(37):49305-49317. PubMed ID: 39239733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]