BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31124670)

  • 1. Multimodal Sensing with a Three-Dimensional Piezoresistive Structure.
    Won SM; Wang H; Kim BH; Lee K; Jang H; Kwon K; Han M; Crawford KE; Li H; Lee Y; Yuan X; Kim SB; Oh YS; Jang WJ; Lee JY; Han S; Kim J; Wang X; Xie Z; Zhang Y; Huang Y; Rogers JA
    ACS Nano; 2019 Oct; 13(10):10972-10979. PubMed ID: 31124670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization.
    Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection.
    Zhao XF; Hang CZ; Wen XH; Liu MY; Zhang H; Yang F; Ma RG; Wang JC; Zhang DW; Lu HL
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14136-14144. PubMed ID: 32131586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.
    Park J; Lee Y; Hong J; Lee Y; Ha M; Jung Y; Lim H; Kim SY; Ko H
    ACS Nano; 2014 Dec; 8(12):12020-9. PubMed ID: 25389631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin.
    Chun S; Son W; Kim H; Lim SK; Pang C; Choi C
    Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Fingertip with Embedded Fiber-Shaped Sensing Arrays for High Resolution Tactile Sensing.
    Weichart J; Sivananthaguru P; Coulter FB; Burger T; Hierold C
    Soft Robot; 2024 Apr; ():. PubMed ID: 38662448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Mechanical Behaviour of a Layered Flexible Tactile Sensor.
    Castellanos-Ramos J; Navas-González R; Fernández I; Vidal-Verdú F
    Sensors (Basel); 2015 Oct; 15(10):25433-62. PubMed ID: 26445044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape.
    Xu T; Wang W; Bian X; Wang X; Wang X; Luo JK; Dong S
    Sci Rep; 2015 Aug; 5():12997. PubMed ID: 26269285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal Tactile Sensor without Signal Fusion for User-Interactive Applications.
    Ma X; Wang C; Wei R; He J; Li J; Liu X; Huang F; Ge S; Tao J; Yuan Z; Chen P; Peng D; Pan C
    ACS Nano; 2022 Feb; 16(2):2789-2797. PubMed ID: 35060692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.
    Harada S; Kanao K; Yamamoto Y; Arie T; Akita S; Takei K
    ACS Nano; 2014 Dec; 8(12):12851-7. PubMed ID: 25437513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh Sensitive Au-Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision.
    Sang M; Kang K; Zhang Y; Zhang H; Kim K; Cho M; Shin J; Hong JH; Kim T; Lee SK; Yeo WH; Lee JW; Lee T; Xu B; Yu KJ
    Adv Mater; 2022 Jan; 34(4):e2105865. PubMed ID: 34750868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing.
    Hua Q; Sun J; Liu H; Bao R; Yu R; Zhai J; Pan C; Wang ZL
    Nat Commun; 2018 Jan; 9(1):244. PubMed ID: 29339793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors.
    Wang K; Lou Z; Wang L; Zhao L; Zhao S; Wang D; Han W; Jiang K; Shen G
    ACS Nano; 2019 Aug; 13(8):9139-9147. PubMed ID: 31330103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications.
    Nicu L; Alava T; Leichle T; Saya D; Pourciel JB; Mathieu F; Soyer C; Remiens D; Ayela C; Haupt K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4475-8. PubMed ID: 23366921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Split-Type Magnetic Soft Tactile Sensor with 3D Force Decoupling.
    Dai H; Zhang C; Pan C; Hu H; Ji K; Sun H; Lyu C; Tang D; Li T; Fu J; Zhao P
    Adv Mater; 2024 Mar; 36(11):e2310145. PubMed ID: 38016424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three realizations and comparison of hardware for piezoresistive tactile sensors.
    Vidal-Verdú F; Oballe-Peinado Ó; Sánchez-Durán JA; Castellanos-Ramos J; Navas-González R
    Sensors (Basel); 2011; 11(3):3249-66. PubMed ID: 22163797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid LAE-CMOS Force-Sensing System Employing TFT-Based Compressed Sensing for Scalability of Tactile Sensing Skins.
    Aygun LE; Kumar P; Zheng Z; Chen TS; Wagner S; Sturm JC; Verma N
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1264-1276. PubMed ID: 31634845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.