These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 31124785)
41. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding. Gardner B; Grüning A PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262 [TBL] [Abstract][Full Text] [Related]
42. Multisample Online Learning for Probabilistic Spiking Neural Networks. Jang H; Simeone O IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2034-2044. PubMed ID: 35089867 [TBL] [Abstract][Full Text] [Related]
43. Spatio-temporal memories for machine learning: a long-term memory organization. Starzyk JA; He H IEEE Trans Neural Netw; 2009 May; 20(5):768-80. PubMed ID: 19336289 [TBL] [Abstract][Full Text] [Related]
44. Subtraction Gates: Another Way to Learn Long-Term Dependencies in Recurrent Neural Networks. He T; Mao H; Yi Z IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1740-1751. PubMed ID: 33373305 [TBL] [Abstract][Full Text] [Related]
45. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment. Ebadzadeh M; Tondu B; Darlot C Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629 [TBL] [Abstract][Full Text] [Related]
46. Towards the next generation of recurrent network models for cognitive neuroscience. Yang GR; Molano-Mazón M Curr Opin Neurobiol; 2021 Oct; 70():182-192. PubMed ID: 34844122 [TBL] [Abstract][Full Text] [Related]
47. Gated Orthogonal Recurrent Units: On Learning to Forget. Jing L; Gulcehre C; Peurifoy J; Shen Y; Tegmark M; Soljacic M; Bengio Y Neural Comput; 2019 Apr; 31(4):765-783. PubMed ID: 30764742 [TBL] [Abstract][Full Text] [Related]
48. A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks. Frady EP; Kleyko D; Sommer FT Neural Comput; 2018 Jun; 30(6):1449-1513. PubMed ID: 29652585 [TBL] [Abstract][Full Text] [Related]
50. Overview of Algorithms for Natural Language Processing and Time Series Analyses. Feghali J; Jimenez AE; Schilling AT; Azad TD Acta Neurochir Suppl; 2022; 134():221-242. PubMed ID: 34862546 [TBL] [Abstract][Full Text] [Related]
51. A Geometrical Analysis of Global Stability in Trained Feedback Networks. Mastrogiuseppe F; Ostojic S Neural Comput; 2019 Jun; 31(6):1139-1182. PubMed ID: 30979353 [TBL] [Abstract][Full Text] [Related]
52. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques. Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163 [TBL] [Abstract][Full Text] [Related]
53. Closing the Control Loop with Time-Variant Embedded Soft Sensors and Recurrent Neural Networks. George Thuruthel T; Gardner P; Iida F Soft Robot; 2022 Dec; 9(6):1167-1176. PubMed ID: 35446168 [TBL] [Abstract][Full Text] [Related]
54. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks. Xie X; Qu H; Liu G; Zhang M; Kurths J PLoS One; 2016; 11(4):e0150329. PubMed ID: 27044001 [TBL] [Abstract][Full Text] [Related]
55. Combining Recurrent Neural Networks and Adversarial Training for Human Motion Synthesis and Control. Wang Z; Chai J; Xia S IEEE Trans Vis Comput Graph; 2021 Jan; 27(1):14-28. PubMed ID: 31502979 [TBL] [Abstract][Full Text] [Related]
60. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter. Fu X; Li S; Fairbank M; Wunsch DC; Alonso E IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):1900-12. PubMed ID: 25330496 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]