These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31125060)

  • 1. EROS-DOCK: protein-protein docking using exhaustive branch-and-bound rotational search.
    Ruiz Echartea ME; Chauvot de Beauchêne I; Ritchie DW
    Bioinformatics; 2019 Dec; 35(23):5003-5010. PubMed ID: 31125060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de Beauchêne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.
    Neveu E; Ritchie DW; Popov P; Grudinin S
    Bioinformatics; 2016 Sep; 32(17):i693-i701. PubMed ID: 27587691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein docking with F(2)Dock 2.0 and GB-rerank.
    Chowdhury R; Rasheed M; Keidel D; Moussalem M; Olson A; Sanner M; Bajaj C
    PLoS One; 2013; 8(3):e51307. PubMed ID: 23483883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.
    Ritchie DW; Kozakov D; Vajda S
    Bioinformatics; 2008 Sep; 24(17):1865-73. PubMed ID: 18591193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Dock: high-performance protein-protein docking.
    Pons C; Jiménez-González D; González-Álvarez C; Servat H; Cabrera-Benítez D; Aguilar X; Fernández-Recio J
    Bioinformatics; 2012 Sep; 28(18):2394-6. PubMed ID: 22815362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UNRES-Dock-protein-protein and peptide-protein docking by coarse-grained replica-exchange MD simulations.
    Krupa P; Karczyńska AS; Mozolewska MA; Liwo A; Czaplewski C
    Bioinformatics; 2021 Jul; 37(11):1613-1615. PubMed ID: 33079977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated CDOCKER with GPUs, Parallel Simulated Annealing, and Fast Fourier Transforms.
    Ding X; Wu Y; Wang Y; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2020 Jun; 16(6):3910-3919. PubMed ID: 32374996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
    Schindler CE; Chauvot de Beauchêne I; de Vries SJ; Zacharias M
    Proteins; 2017 Mar; 85(3):391-398. PubMed ID: 27785830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking.
    Pierce B; Tong W; Weng Z
    Bioinformatics; 2005 Apr; 21(8):1472-8. PubMed ID: 15613396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RRDB: a comprehensive and non-redundant benchmark for RNA-RNA docking and scoring.
    Yan Y; Huang SY
    Bioinformatics; 2018 Feb; 34(3):453-458. PubMed ID: 29028888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible docking and refinement with a coarse-grained protein model using ATTRACT.
    de Vries S; Zacharias M
    Proteins; 2013 Dec; 81(12):2167-74. PubMed ID: 23996217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT.
    Porter KA; Xia B; Beglov D; Bohnuud T; Alam N; Schueler-Furman O; Kozakov D
    Bioinformatics; 2017 Oct; 33(20):3299-3301. PubMed ID: 28430871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring.
    Jiménez-García B; Pons C; Fernández-Recio J
    Bioinformatics; 2013 Jul; 29(13):1698-9. PubMed ID: 23661696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProPOSE: Direct Exhaustive Protein-Protein Docking with Side Chain Flexibility.
    Hogues H; Gaudreault F; Corbeil CR; Deprez C; Sulea T; Purisima EO
    J Chem Theory Comput; 2018 Sep; 14(9):4938-4947. PubMed ID: 30107730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking unbound proteins using shape complementarity, desolvation, and electrostatics.
    Chen R; Weng Z
    Proteins; 2002 May; 47(3):281-94. PubMed ID: 11948782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.
    Sasse A; de Vries SJ; Schindler CE; de Beauchêne IC; Zacharias M
    PLoS One; 2017; 12(1):e0170625. PubMed ID: 28118389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pushing the accuracy limit of shape complementarity for protein-protein docking.
    Yan Y; Huang SY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):696. PubMed ID: 31874620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of ZDOCK and IRAD in CAPRI rounds 28-34.
    Vreven T; Pierce BG; Borrman TM; Weng Z
    Proteins; 2017 Mar; 85(3):408-416. PubMed ID: 27718275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.