BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31125578)

  • 1. One-pot, three-step cascade synthesis of D-danshensu using engineered Escherichia coli whole cells.
    Xiong T; Jia P; Jiang J; Bai Y; Fan TP; Zheng X; Cai Y
    J Biotechnol; 2019 Jul; 300():48-54. PubMed ID: 31125578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells.
    Xiong T; Jiang J; Bai Y; Fan TP; Zhao Y; Zheng X; Cai Y
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6097-6105. PubMed ID: 31187210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli.
    Zhu Y; Wang Y; Xu J; Chen J; Wang L; Qi B
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29140277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of L-tyrosine using tyrosine phenol-lyase by whole cell biotransformation approach.
    Xu S; Zhang Y; Li Y; Xia X; Zhou J; Shi G
    Enzyme Microb Technol; 2019 Dec; 131():109430. PubMed ID: 31615664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient L-lactate production using engineered Escherichia coli with dissimilar temperature optima for L-lactate formation and cell growth.
    Niu D; Tian K; Prior BA; Wang M; Wang Z; Lu F; Singh S
    Microb Cell Fact; 2014 May; 13():78. PubMed ID: 24884499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
    Moxley WC; Eiteman MA
    Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of d-lactate using a pyruvate-producing Escherichia coli strain.
    Akita H; Nakashima N; Hoshino T
    Biosci Biotechnol Biochem; 2017 Jul; 81(7):1452-1455. PubMed ID: 28463593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox self-sufficient biocatalyst system for conversion of 3,4-Dihydroxyphenyl-L-alanine into (R)- or (S)-3,4-Dihydroxyphenyllactic acid.
    Xiong T; Jiang J; Bai Y; Fan TP; Zhao Y; Zheng X; Cai Y
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1081-1090. PubMed ID: 31201648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation.
    Han H; Xu B; Zeng W; Zhou J
    J Biotechnol; 2020 Sep; 321():68-77. PubMed ID: 32445779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient biocatalyst of L-DOPA with Escherichia coli expressing a tyrosine phenol-lyase mutant from Kluyvera intermedia.
    Yuan W; Zhong S; Xiao Y; Wang Z; Sun J
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1187-1200. PubMed ID: 31729696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
    Perez-Zabaleta M; Guevara-Martínez M; Gustavsson M; Quillaguamán J; Larsson G; van Maris AJA
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5627-5639. PubMed ID: 31104101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase.
    Zhang J; Li X
    Biotechnol Lett; 2018 Jan; 40(1):165-171. PubMed ID: 29038927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bi-enzymatic cascade to yield pyruvate as co-substrate for L-tyrosine production.
    Guo X; Wu W; Zhang M; Wu L; Huang J
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10005-10018. PubMed ID: 33128613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.
    Zheng RC; Tang XL; Suo H; Feng LL; Liu X; Yang J; Zheng YG
    Enzyme Microb Technol; 2018 May; 112():88-93. PubMed ID: 29499786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and comparison of non-natural pathways for microbial phenol production.
    Thompson B; Machas M; Nielsen DR
    Biotechnol Bioeng; 2016 Aug; 113(8):1745-54. PubMed ID: 26804162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing Agmatine Production in
    Xu D; Zhang L
    J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway.
    Yao YF; Wang CS; Qiao J; Zhao GR
    Metab Eng; 2013 Sep; 19():79-87. PubMed ID: 23774671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.