These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31125599)

  • 21. A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons.
    Zhang M; Qu H; Belatreche A; Chen Y; Yi Z
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):123-137. PubMed ID: 29993588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classifying Neuronal Cell Types Based on Shared Electrophysiological Information from Humans and Mice.
    Ophir O; Shefi O; Lindenbaum O
    Neuroinformatics; 2024 Jul; ():. PubMed ID: 38976152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel automated spike sorting algorithm with adaptable feature extraction.
    Bestel R; Daus AW; Thielemann C
    J Neurosci Methods; 2012 Oct; 211(1):168-78. PubMed ID: 22951122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic correlates of neuron electrophysiological diversity.
    Tripathy SJ; Toker L; Li B; Crichlow CL; Tebaykin D; Mancarci BO; Pavlidis P
    PLoS Comput Biol; 2017 Oct; 13(10):e1005814. PubMed ID: 29069078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting.
    Ponulak F; Kasiński A
    Neural Comput; 2010 Feb; 22(2):467-510. PubMed ID: 19842989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial neural network model for predicting changes in ion channel conductance based on cardiac action potential shapes generated via simulation.
    Jeong DU; Lim KM
    Sci Rep; 2021 Apr; 11(1):7831. PubMed ID: 33837240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust spike-train learning in spike-event based weight update.
    Shrestha SB; Song Q
    Neural Netw; 2017 Dec; 96():33-46. PubMed ID: 28957730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new supervised learning algorithm for spiking neurons.
    Xu Y; Zeng X; Zhong S
    Neural Comput; 2013 Jun; 25(6):1472-511. PubMed ID: 23517101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging.
    López-Hernández GY; Ananth M; Jiang L; Ballinger EC; Talmage DA; Role LW
    J Neurochem; 2017 Aug; 142 Suppl 2(Suppl 2):103-110. PubMed ID: 28791701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single neuron dynamics and computation.
    Brunel N; Hakim V; Richardson MJ
    Curr Opin Neurobiol; 2014 Apr; 25():149-55. PubMed ID: 24492069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classifying heterogeneity of spontaneous up-states: a method for revealing variations in firing probability, engaged neurons and Fano factor.
    Gullo F; Maffezzoli A; Dossi E; Lecchi M; Wanke E
    J Neurosci Methods; 2012 Jan; 203(2):407-17. PubMed ID: 22037594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Spike Times in an Electrophysiological Setup.
    Ljungquist B; Petersson P; Johansson AJ; Schouenborg J; Garwicz M
    Neuroinformatics; 2018 Apr; 16(2):217-229. PubMed ID: 29508123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.
    Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S
    Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology.
    Wei Z; Lin BJ; Chen TW; Daie K; Svoboda K; Druckmann S
    PLoS Comput Biol; 2020 Sep; 16(9):e1008198. PubMed ID: 32931495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.