These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31125684)
1. Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Wajner M; Amaral AU; Leipnitz G; Seminotti B Int J Dev Neurosci; 2019 Nov; 78():215-221. PubMed ID: 31125684 [TBL] [Abstract][Full Text] [Related]
2. Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice. Amaral AU; Seminotti B; da Silva JC; de Oliveira FH; Ribeiro RT; Vargas CR; Leipnitz G; Santamaría A; Souza DO; Wajner M Neurotox Res; 2018 Apr; 33(3):593-606. PubMed ID: 29235064 [TBL] [Abstract][Full Text] [Related]
3. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I. Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119 [TBL] [Abstract][Full Text] [Related]
4. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I. Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940 [TBL] [Abstract][Full Text] [Related]
5. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Amaral AU; Seminotti B; Cecatto C; Fernandes CG; Busanello EN; Zanatta Â; Kist LW; Bogo MR; de Souza DO; Woontner M; Goodman S; Koeller DM; Wajner M Mol Genet Metab; 2012 Nov; 107(3):375-82. PubMed ID: 22999741 [TBL] [Abstract][Full Text] [Related]
6. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Gonzalez Melo M; Remacle N; Cudré-Cung HP; Roux C; Poms M; Cudalbu C; Barroso M; Gersting SW; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Rüfenacht V; Häberle J; Braissant O; Ballhausen D Mol Genet Metab; 2021 Jun; 133(2):157-181. PubMed ID: 33965309 [TBL] [Abstract][Full Text] [Related]
7. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I. Vendramin Pasquetti M; Meier L; Loureiro S; Ganzella M; Junges B; Barbieri Caus L; Umpierrez Amaral A; Koeller DM; Goodman S; Woontner M; Gomes de Souza DO; Wajner M; Calcagnotto ME Epilepsia; 2017 Oct; 58(10):1771-1781. PubMed ID: 28762469 [TBL] [Abstract][Full Text] [Related]
8. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Rodrigues MDN; Seminotti B; Zanatta Â; de Mello Gonçalves A; Bellaver B; Amaral AU; Quincozes-Santos A; Goodman SI; Woontner M; Souza DO; Wajner M Mol Neurobiol; 2017 Aug; 54(6):4795-4805. PubMed ID: 27510504 [TBL] [Abstract][Full Text] [Related]
9. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292 [TBL] [Abstract][Full Text] [Related]
11. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. Rodrigues MD; Seminotti B; Amaral AU; Leipnitz G; Goodman SI; Woontner M; de Souza DO; Wajner M J Neurol Sci; 2015 Dec; 359(1-2):133-40. PubMed ID: 26671102 [TBL] [Abstract][Full Text] [Related]
12. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I. Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815 [TBL] [Abstract][Full Text] [Related]
13. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543 [TBL] [Abstract][Full Text] [Related]
14. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Seminotti B; Amaral AU; Ribeiro RT; Rodrigues MDN; Colín-González AL; Leipnitz G; Santamaría A; Wajner M Mol Neurobiol; 2016 Nov; 53(9):6459-6475. PubMed ID: 26607633 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Guerreiro G; Faverzani J; Moura AP; Volfart V; Gome Dos Reis B; Sitta A; Gonzalez EA; de Lima Rosa G; Coitinho AS; Baldo G; Wajner M; Vargas CR Arch Biochem Biophys; 2021 Sep; 709():108970. PubMed ID: 34181873 [TBL] [Abstract][Full Text] [Related]
16. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1. Thies B; Meyer-Schwesinger C; Lamp J; Schweizer M; Koeller DM; Ullrich K; Braulke T; Mühlhausen C Biochim Biophys Acta; 2013 Oct; 1832(10):1463-72. PubMed ID: 23623985 [TBL] [Abstract][Full Text] [Related]
17. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804 [TBL] [Abstract][Full Text] [Related]
18. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171 [TBL] [Abstract][Full Text] [Related]
19. Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: a role for oxidative stress in GA I neuropathology. Seminotti B; Ribeiro RT; Amaral AU; da Rosa MS; Pereira CC; Leipnitz G; Koeller DM; Goodman S; Woontner M; Wajner M J Neurol Sci; 2014 Sep; 344(1-2):105-13. PubMed ID: 24996493 [TBL] [Abstract][Full Text] [Related]
20. Adult-onset glutaric aciduria type I presenting with white matter abnormalities and subependymal nodules. Pierson TM; Nezhad M; Tremblay MA; Lewis R; Wong D; Salamon N; Sicotte N Neurogenetics; 2015 Oct; 16(4):325-8. PubMed ID: 26316201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]