These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31125740)

  • 1. Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolites.
    Tauanov Z; Inglezakis VJ
    Sci Total Environ; 2019 Sep; 682():259-270. PubMed ID: 31125740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water.
    Tauanov Z; Tsakiridis PE; Mikhalovsky SV; Inglezakis VJ
    J Environ Manage; 2018 Oct; 224():164-171. PubMed ID: 30041095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic sodalite doped with silver nanoparticles: Characterization and mercury (II) removal from aqueous solutions.
    Tauanov Z; Tsakiridis PE; Shah D; Inglezakis VJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(9):951-959. PubMed ID: 31057057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Interactions and Mechanisms Study on the Removal of Iodide from Water by Use of Natural Zeolite-Based Silver Nanocomposites.
    Inglezakis VJ; Satayeva A; Yagofarova A; Tauanov Z; Meiramkulova K; Farrando-Pérez J; Bear JC
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32545557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion-Assisted Hydrothermal Synthesis of Technogenic-Waste-Derived Zeolites and Nanocomposites: Synthesis, Characterization, and Mercury (II) Adsorption.
    Suleimenova M; Zharylkan S; Mekenova M; Mutushev A; Azat S; Tolepova A; Baimenov A; Satayeva A; Tauanov Z
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide.
    Karanfil T; Moro EC; Serkiz SM
    Environ Technol; 2005 Nov; 26(11):1255-62. PubMed ID: 16335600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and sequestration of iodide using silver-impregnated activated carbon.
    Hoskins JS; Karanfil T; Serkiz SM
    Environ Sci Technol; 2002 Feb; 36(4):784-9. PubMed ID: 11878398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ deposition of silver-iron oxide nanoparticles on the surface of fly ash for water purification.
    Joshi MK; Pant HR; Liao N; Kim JH; Kim HJ; Park CH; Kim CS
    J Colloid Interface Sci; 2015 Sep; 453():159-168. PubMed ID: 25985419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of iodide anions in water by silver nanoparticles supported on polystyrene anion exchanger.
    Li L; Yu SJ; Zheng RG; Li P; Li QC; Liu JF
    J Environ Sci (China); 2023 Jun; 128():45-54. PubMed ID: 36801041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced uptake of iodide on Ag@Cu
    Mao P; Liu Y; Jiao Y; Chen S; Yang Y
    Chemosphere; 2016 Dec; 164():396-403. PubMed ID: 27596827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite.
    Belviso C; Cavalcante F; Di Gennaro S; Lettino A; Palma A; Ragone P; Fiore S
    J Environ Manage; 2014 May; 137():16-22. PubMed ID: 24589679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites.
    Somerset VS; Petrik LF; White RA; Klink MJ; Key D; Iwuoha E
    Talanta; 2004 Sep; 64(1):109-14. PubMed ID: 18969574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan /Zeolite Y/Nano ZrO
    Teimouri A; Nasab SG; Vahdatpoor N; Habibollahi S; Salavati H; Chermahini AN
    Int J Biol Macromol; 2016 Dec; 93(Pt A):254-266. PubMed ID: 27238586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Removal of Penicillin from Aqueous Solution Using Zinc Oxide/Natural-Zeolite Composite Nano-Powders Prepared Via Ball Milling Technique.
    Khosravian P; Ghashang M; Ghayoor H
    Recent Pat Nanotechnol; 2017 Jul; 11(2):154-164. PubMed ID: 28056750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation.
    Liu S; Wang N; Zhang Y; Li Y; Han Z; Na P
    J Hazard Mater; 2015 Mar; 284():171-81. PubMed ID: 25463231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing bromide removal by graphene-silver nanocomposites: Nanoparticulate silver enhances bromide selectivity through direct surface interactions.
    Barrios AC; Apul OG; Perreault F
    Chemosphere; 2023 Jul; 330():138711. PubMed ID: 37076084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal.
    Soni R; Shukla DP
    Chemosphere; 2019 Mar; 219():504-509. PubMed ID: 30553210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies.
    Faghihian H; Moayed M; Firooz A; Iravani M
    J Colloid Interface Sci; 2013 Mar; 393():445-51. PubMed ID: 23266030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash.
    Wu D; Sui Y; He S; Wang X; Li C; Kong H
    J Hazard Mater; 2008 Jul; 155(3):415-23. PubMed ID: 18178311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.