These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31125791)
21. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Gao QT; Tam NF Chemosphere; 2011 Jan; 82(3):346-54. PubMed ID: 21035163 [TBL] [Abstract][Full Text] [Related]
22. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Qian H; Chen W; Sheng GD; Xu X; Liu W; Fu Z Aquat Toxicol; 2008 Jul; 88(4):301-7. PubMed ID: 18584892 [TBL] [Abstract][Full Text] [Related]
23. Photosynthetic Toxicity of Enrofloxacin on Li Z; Zhang X; Fang H; Lin X; Dai X; Liu H Int J Environ Res Public Health; 2022 May; 19(9):. PubMed ID: 35564941 [TBL] [Abstract][Full Text] [Related]
24. Alleviating CTAC and Flu combined pollution damage in Chlorella vulgaris by exogenous nitric oxide. Li Q; Liang Z; Ge F; Xu Y; Yang L; Zeng H Chemosphere; 2014 Feb; 96():39-45. PubMed ID: 24001670 [TBL] [Abstract][Full Text] [Related]
25. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Rai UN; Singh NK; Upadhyay AK; Verma S Bioresour Technol; 2013 May; 136():604-9. PubMed ID: 23567737 [TBL] [Abstract][Full Text] [Related]
26. Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Qian H; Daniel Sheng G; Liu W; Lu Y; Liu Z; Fu Z Environ Toxicol Chem; 2008 Jan; 27(1):182-7. PubMed ID: 18092879 [TBL] [Abstract][Full Text] [Related]
27. Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. Machado MD; Soares EV Aquat Toxicol; 2019 Mar; 208():179-186. PubMed ID: 30682620 [TBL] [Abstract][Full Text] [Related]
28. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids. Chen S; Wang L; Feng W; Yuan M; Li J; Xu H; Zheng X; Zhang W Sci Rep; 2020 May; 10(1):8243. PubMed ID: 32427937 [TBL] [Abstract][Full Text] [Related]
29. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Campos A; Araújo P; Pinheiro C; Azevedo J; Osório H; Vasconcelos V Ecotoxicol Environ Saf; 2013 Aug; 94():45-53. PubMed ID: 23726538 [TBL] [Abstract][Full Text] [Related]
30. Effects of mesotrione on oxidative stress, subcellular structure, and membrane integrity in Chlorella vulgaris. Zhang F; Yao X; Sun S; Wang L; Liu W; Jiang X; Wang J Chemosphere; 2020 May; 247():125668. PubMed ID: 31931307 [TBL] [Abstract][Full Text] [Related]
31. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Xiong JQ; Kurade MB; Jeon BH Environ Pollut; 2017 Jul; 226():486-493. PubMed ID: 28449968 [TBL] [Abstract][Full Text] [Related]
32. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. Wan J; Guo P; Peng X; Wen K J Hazard Mater; 2015; 283():778-86. PubMed ID: 25464321 [TBL] [Abstract][Full Text] [Related]
33. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Gomes MP; Moreira Brito JC; Cristina Rocha D; Navarro-Silva MA; Juneau P Ecotoxicol Environ Saf; 2020 Oct; 203():111025. PubMed ID: 32888593 [TBL] [Abstract][Full Text] [Related]
34. Polyethylene terephthalate nanoparticles induce oxidative damage in Chlorella vulgaris. Vijayan S; Liu R; George S; Bhaskaran S Plant Physiol Biochem; 2024 Oct; 215():108987. PubMed ID: 39089045 [TBL] [Abstract][Full Text] [Related]
35. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris. Shen YF; Liu L; Gong YX; Zhu B; Liu GL; Wang GX Environ Toxicol Pharmacol; 2014 May; 37(3):1040-7. PubMed ID: 24762415 [TBL] [Abstract][Full Text] [Related]
36. Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris. Qian H; Li J; Pan X; Sun L; Lu T; Ran H; Fu Z Bull Environ Contam Toxicol; 2011 Nov; 87(5):512-6. PubMed ID: 21785878 [TBL] [Abstract][Full Text] [Related]
37. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Geiger E; Hornek-Gausterer R; Saçan MT Ecotoxicol Environ Saf; 2016 Jul; 129():189-98. PubMed ID: 27045919 [TBL] [Abstract][Full Text] [Related]
38. Effects of the antimalarial lumefantrine on Lemna minor, Raphidocelis subcapitata and Chlorella vulgaris. Chia MA; Ameh I; Agee JT; Otogo RA; Shaba AF; Bashir H; Umar F; Yisa AG; Uyovbisere EE; Sha'aba RI Environ Toxicol Pharmacol; 2021 Jul; 85():103635. PubMed ID: 33716093 [TBL] [Abstract][Full Text] [Related]
39. Responses of Chlorella vulgaris exposed to boron: Mechanisms of toxicity assessed by multiple endpoints. Chen X; Su L; Yin X; Pei Y Environ Toxicol Pharmacol; 2019 Aug; 70():103208. PubMed ID: 31207443 [TBL] [Abstract][Full Text] [Related]
40. Effect of elevated benzophenone-4 (BP4) concentration on Chlorella vulgaris growth and cellular metabolisms. Huang Y; Luo L; Ma XY; Wang XC Environ Sci Pollut Res Int; 2018 Nov; 25(32):32549-32561. PubMed ID: 30238265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]