These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Demir Y; Durmaz L; Taslimi P; Gulçin İ Biotechnol Appl Biochem; 2019 Sep; 66(5):781-786. PubMed ID: 31135076 [TBL] [Abstract][Full Text] [Related]
4. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Demir Y; Işık M; Gülçin İ; Beydemir Ş J Biochem Mol Toxicol; 2017 Sep; 31(9):. PubMed ID: 28557170 [TBL] [Abstract][Full Text] [Related]
5. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Demir Y; Taslimi P; Ozaslan MS; Oztaskin N; Çetinkaya Y; Gulçin İ; Beydemir Ş; Goksu S Arch Pharm (Weinheim); 2018 Dec; 351(12):e1800263. PubMed ID: 30478943 [TBL] [Abstract][Full Text] [Related]
6. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Taslimi P; Aslan HE; Demir Y; Oztaskin N; Maraş A; Gulçin İ; Beydemir S; Goksu S Int J Biol Macromol; 2018 Nov; 119():857-863. PubMed ID: 30077669 [TBL] [Abstract][Full Text] [Related]
7. Phenolic compounds: The inhibition effect on polyol pathway enzymes. Aslan HE; Beydemir Ş Chem Biol Interact; 2017 Mar; 266():47-55. PubMed ID: 28153595 [TBL] [Abstract][Full Text] [Related]
8. Determination of the inhibition profiles of pyrazolyl-thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Demir Y; Taslimi P; Koçyiğit ÜM; Akkuş M; Özaslan MS; Duran HE; Budak Y; Tüzün B; Gürdere MB; Ceylan M; Taysi S; Gülçin İ; Beydemir Ş Arch Pharm (Weinheim); 2020 Dec; 353(12):e2000118. PubMed ID: 32761859 [TBL] [Abstract][Full Text] [Related]
9. Aldose reductase inhibitory and antiglycation properties of phytoconstituents of Cichorium intybus: Potential therapeutic role in diabetic retinopathy. Ahmad S; Ahmad MFA; Alouffi S; Khan S; Khan M; Khan MWA; Prakash C; Ahmad N; Ansari IA Int J Biol Macromol; 2024 Oct; 277(Pt 1):133816. PubMed ID: 39002911 [TBL] [Abstract][Full Text] [Related]
10. In vitro aldose reductase inhibitory activity of some flavonyl-2,4-thiazolidinediones. Daş-Evcimen N; Bozdağ-Dündar O; Sarikaya M; Ertan R J Enzyme Inhib Med Chem; 2008 Jun; 23(3):297-301. PubMed ID: 18569331 [TBL] [Abstract][Full Text] [Related]
11. The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders. Demir Y; Duran HE; Durmaz L; Taslimi P; Beydemir Ş; Gulçin İ Appl Biochem Biotechnol; 2020 Feb; 190(2):437-447. PubMed ID: 31378842 [TBL] [Abstract][Full Text] [Related]
12. The interactions of cephalosporins on polyol pathway enzymes from sheep kidney. Şengül B; Beydemir Ş Arch Physiol Biochem; 2018 Feb; 124(1):35-44. PubMed ID: 28758816 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Sever B; Altıntop MD; Demir Y; Akalın Çiftçi G; Beydemir Ş; Özdemir A Bioorg Chem; 2020 Sep; 102():104110. PubMed ID: 32739480 [TBL] [Abstract][Full Text] [Related]
14. Localization, isolation and properties of three NADPH-dependent aldehyde reducing enzymes from dog kidney. Ohta M; Tanimoto T; Tanaka A Biochim Biophys Acta; 1991 Jul; 1078(3):395-403. PubMed ID: 1907200 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol. Sampath C; Sang S; Ahmedna M Biomed Pharmacother; 2016 Dec; 84():502-513. PubMed ID: 27685794 [TBL] [Abstract][Full Text] [Related]
16. Residues affecting the catalysis and inhibition of rat lens aldose reductase. Carper DA; Hohman TC; Old SE Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733 [TBL] [Abstract][Full Text] [Related]
17. Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: Synthesis, biological screening and molecular docking study. Shehzad MT; Imran A; Njateng GSS; Hameed A; Islam M; Al-Rashida M; Uroos M; Asari A; Shafiq Z; Iqbal J Bioorg Chem; 2019 Jun; 87():857-866. PubMed ID: 30551808 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501 [TBL] [Abstract][Full Text] [Related]
19. Human kidney aldose and aldehyde reductases. Sato S; Kador PF J Diabetes Complications; 1993; 7(3):179-87. PubMed ID: 8343612 [TBL] [Abstract][Full Text] [Related]
20. Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes. Demir Y; Köksal Z Arch Physiol Biochem; 2022 Aug; 128(4):979-984. PubMed ID: 32202954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]