BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31126530)

  • 1. Hydrogenases and H
    Baffert C; Kpebe A; Avilan L; Brugna M
    Adv Microb Physiol; 2019; 74():143-189. PubMed ID: 31126530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio.
    Fauque G; Peck HD; Moura JJ; Huynh BH; Berlier Y; DerVartanian DV; Teixeira M; Przybyla AE; Lespinat PA; Moura I
    FEMS Microbiol Rev; 1988 Dec; 4(4):299-344. PubMed ID: 3078655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new mechanistic model for an O
    Kpebe A; Benvenuti M; Guendon C; Rebai A; Fernandez V; Le Laz S; Etienne E; Guigliarelli B; García-Molina G; de Lacey AL; Baffert C; Brugna M
    Biochim Biophys Acta Bioenerg; 2018 Dec; 1859(12):1302-1312. PubMed ID: 30463674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electron-bifurcating FeFe-hydrogenase Hnd is involved in ethanol metabolism in Desulfovibrio fructosovorans grown on pyruvate.
    Payne N; Kpebe A; Guendon C; Baffert C; Ros J; Lebrun R; Denis Y; Shintu L; Brugna M
    Mol Microbiol; 2022 Apr; 117(4):907-920. PubMed ID: 35066935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale simulations give insight into the hydrogen in and out pathways of [NiFe]-hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans.
    Oteri F; Baaden M; Lojou E; Sacquin-Mora S
    J Phys Chem B; 2014 Dec; 118(48):13800-11. PubMed ID: 25399809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments.
    Tai H; Hirota S
    Chembiochem; 2020 Jun; 21(11):1573-1581. PubMed ID: 32180334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough.
    Valente FM; Almeida CC; Pacheco I; Carita J; Saraiva LM; Pereira IA
    J Bacteriol; 2006 May; 188(9):3228-35. PubMed ID: 16621815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pH dependence of proton-deuterium exchange, hydrogen production and uptake catalyzed by hydrogenases from sulfate-reducing bacteria.
    Lespinat PA; Berlier Y; Fauque G; Czechowski M; Dimon B; Le Gall J
    Biochimie; 1986 Jan; 68(1):55-61. PubMed ID: 3015249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans.
    Malki S; De Luca G; Fardeau ML; Rousset M; Belaich JP; Dermoun Z
    Arch Microbiol; 1997 Jan; 167(1):38-45. PubMed ID: 9000340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans.
    Rousset M; Dermoun Z; Chippaux M; Bélaich JP
    Mol Microbiol; 1991 Jul; 5(7):1735-40. PubMed ID: 1943706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas.
    Morais-Silva FO; Santos CI; Rodrigues R; Pereira IA; Rodrigues-Pousada C
    J Bacteriol; 2013 Oct; 195(20):4753-60. PubMed ID: 23974026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H
    Woodard TL; Ueki T; Lovley DR
    mBio; 2023 Apr; 14(2):e0007623. PubMed ID: 36786581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans.
    Casalot L; Valette O; De Luca G; Dermoun Z; Rousset M; de Philip P
    FEMS Microbiol Lett; 2002 Aug; 214(1):107-12. PubMed ID: 12204380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.
    Calusinska M; Happe T; Joris B; Wilmotte A
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1575-1588. PubMed ID: 20395274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains.
    Mikheenko IP; Rousset M; Dementin S; Macaskie LE
    Appl Environ Microbiol; 2008 Oct; 74(19):6144-6. PubMed ID: 18689514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of [FeFe]-Hydrogenase Genes during H
    Baba R; Morita M; Asakawa S; Watanabe T
    Microbes Environ; 2017 Jun; 32(2):125-132. PubMed ID: 28502969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation.
    Payne N; Kpebe A; Guendon C; Baffert C; Maillot M; Haurogné T; Tranchida F; Brugna M; Shintu L
    Microbiol Res; 2023 Mar; 268():127279. PubMed ID: 36592576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough.
    Zacarias S; Vélez M; Pita M; De Lacey AL; Matias PM; Pereira IAC
    Methods Enzymol; 2018; 613():169-201. PubMed ID: 30509465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.