These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31126592)
21. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
22. Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control. Kainz H; Wesseling M; Jonkers I Clin Biomech (Bristol); 2021 Jul; 87():105402. PubMed ID: 34098149 [TBL] [Abstract][Full Text] [Related]
23. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models. Harris MD; MacWilliams BA; Bo Foreman K; Peters CL; Weiss JA; Anderson AE J Biomech; 2017 Mar; 54():80-87. PubMed ID: 28233552 [TBL] [Abstract][Full Text] [Related]
24. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants. Kutzner I; Richter A; Gordt K; Dymke J; Damm P; Duda GN; Günzl R; Bergmann G PLoS One; 2017; 12(3):e0171972. PubMed ID: 28319145 [TBL] [Abstract][Full Text] [Related]
25. Compressive and shear hip joint contact forces are affected by pediatric obesity during walking. Lerner ZF; Browning RC J Biomech; 2016 Jun; 49(9):1547-1553. PubMed ID: 27040390 [TBL] [Abstract][Full Text] [Related]
26. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. Stansfield BW; Nicol AC; Paul JP; Kelly IG; Graichen F; Bergmann G J Biomech; 2003 Jul; 36(7):929-36. PubMed ID: 12757801 [TBL] [Abstract][Full Text] [Related]
27. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach. Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024 [TBL] [Abstract][Full Text] [Related]
28. Subject-specific hip geometry affects predicted hip joint contact forces during gait. Lenaerts G; De Groote F; Demeulenaere B; Mulier M; Van der Perre G; Spaepen A; Jonkers I J Biomech; 2008; 41(6):1243-52. PubMed ID: 18346745 [TBL] [Abstract][Full Text] [Related]
29. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy. Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934 [TBL] [Abstract][Full Text] [Related]
30. Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation. Zhang X; Chen Z; Wang L; Yang W; Li D; Jin Z Proc Inst Mech Eng H; 2015 Jul; 229(7):477-90. PubMed ID: 26063118 [TBL] [Abstract][Full Text] [Related]
31. Altering the strength of the muscles crossing the lower limb joints only affects knee joint reaction forces. Bicer M; Phillips AT; Modenese L Gait Posture; 2022 Jun; 95():210-216. PubMed ID: 35550278 [TBL] [Abstract][Full Text] [Related]
32. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. Adouni M; Shirazi-Adl A J Orthop Res; 2014 Jan; 32(1):69-78. PubMed ID: 24038150 [TBL] [Abstract][Full Text] [Related]
34. No effect of femoral offset on bone implant micromotion in an experimental model. Amirouche F; Solitro G; Walia A Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866 [TBL] [Abstract][Full Text] [Related]
35. In vivo hip joint loads during three methods of walking with forearm crutches. Damm P; Schwachmeyer V; Dymke J; Bender A; Bergmann G Clin Biomech (Bristol); 2013 Jun; 28(5):530-5. PubMed ID: 23643290 [TBL] [Abstract][Full Text] [Related]
36. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy. Veerkamp K; Schallig W; Harlaar J; Pizzolato C; Carty CP; Lloyd DG; van der Krogt MM J Biomech; 2019 Jul; 92():45-53. PubMed ID: 31153626 [TBL] [Abstract][Full Text] [Related]
37. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
38. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model. Jung Y; Phan CB; Koo S J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762 [TBL] [Abstract][Full Text] [Related]
39. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking. Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756 [TBL] [Abstract][Full Text] [Related]
40. A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait. Hainisch R; Kranzl A; Lin YC; Pandy MG; Gfoehler M Comput Methods Biomech Biomed Engin; 2021 Mar; 24(4):349-357. PubMed ID: 32940060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]