BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31126903)

  • 1. Beyond the whole-mount phenotype: high-resolution imaging in fluorescence-based applications on zebrafish.
    Oralová V; Rosa JT; Soenens M; Bek JW; Willaert A; Witten PE; Huysseune A
    Biol Open; 2019 May; 8(5):. PubMed ID: 31126903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.
    Sullivan-Brown J; Bisher ME; Burdine RD
    Nat Protoc; 2011 Jan; 6(1):46-55. PubMed ID: 21212782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flat mount preparation for whole-mount fluorescent imaging of zebrafish embryos.
    Frommelt J; Liu E; Bhaidani A; Hu B; Gao Y; Ye D; Lin F
    Biol Open; 2023 Jul; 12(7):. PubMed ID: 37746815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution imaging at the cellular and subcellular levels in flattened whole mounts of early zebrafish embryos.
    Yager TD; Ikegami R; Rivera-Bennetts AK; Zhao C; Brooker D
    Biochem Cell Biol; 1997; 75(5):535-50. PubMed ID: 9551178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-Mount Immunohistochemical and Immunofluorescence Assays in Zebrafish Embryos.
    Köktürk M; Altındağ F
    Methods Mol Biol; 2024; 2753():403-407. PubMed ID: 38285355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histology of plastic embedded amphibian embryos and larvae.
    Kurth T; Weiche S; Vorkel D; Kretschmar S; Menge A
    Genesis; 2012 Mar; 50(3):235-50. PubMed ID: 22083609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Whole-Mount Immunohistochemistry of Zebrafish (Danio rerio) Embryos and Larvae Protocol.
    Santos D; Monteiro SM; Luzio A
    Methods Mol Biol; 2018; 1797():365-371. PubMed ID: 29896703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-induced antigen retrieval applied in zebrafish: whole-mount in situ immunofluorescence microscopy.
    Lin CY; Su WT; Li LT
    Microsc Microanal; 2012 Jun; 18(3):493-6. PubMed ID: 22640961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting Thick Sections Using a Vibratome.
    Iulianella A
    Cold Spring Harb Protoc; 2017 Jun; 2017(6):pdb.prot094011. PubMed ID: 28572189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples.
    Schulte SJ; Fornace ME; Hall JK; Shin GJ; Pierce NA
    Development; 2024 Feb; 151(4):. PubMed ID: 38415752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Histology for Craniofacial Studies on Zebrafish and Other Teleost Models.
    Huysseune A; Soenens M; Sire JY; Witten PE
    Methods Mol Biol; 2022; 2403():249-262. PubMed ID: 34913128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters.
    Ju B; Xu Y; He J; Liao J; Yan T; Hew CL; Lam TJ; Gong Z
    Dev Genet; 1999; 25(2):158-67. PubMed ID: 10440850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of oct4:gfp transgenic zebrafish line for monitoring cellular multipotency by GFP fluorescence.
    Kato H; Abe K; Yokota S; Matsuno R; Mikekado T; Yokoi H; Suzuki T
    In Vitro Cell Dev Biol Anim; 2015 Jan; 51(1):42-9. PubMed ID: 25515246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing Multiciliated Cells in the Zebrafish Through a Combined Protocol of Whole Mount Fluorescent In Situ Hybridization and Immunofluorescence.
    Marra AN; Ulrich M; White A; Springer M; Wingert RA
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a plastic embedding method for large-volume and fluorescent-protein-expressing tissues.
    Yang Z; Hu B; Zhang Y; Luo Q; Gong H
    PLoS One; 2013; 8(4):e60877. PubMed ID: 23577174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of identified GFP-expressing cells by light and electron microscopy.
    Luby-Phelps K; Ning G; Fogerty J; Besharse JC
    J Histochem Cytochem; 2003 Mar; 51(3):271-4. PubMed ID: 12588954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH.
    Paragas VB; Zhang YZ; Haugland RP; Singer VL
    J Histochem Cytochem; 1997 Mar; 45(3):345-57. PubMed ID: 9071316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive whole-mount fluorescent in situ hybridization in zebrafish using enhanced tyramide signal amplification.
    Lauter G; Söll I; Hauptmann G
    Methods Mol Biol; 2014; 1082():175-85. PubMed ID: 24048934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing the Interrenal Steroidogenic Tissue and Its Vascular Microenvironment in Zebrafish.
    Chou CW; Lin J; Hou HY; Liu YW
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos.
    Bernut A; Dupont C; Sahuquet A; Herrmann JL; Lutfalla G; Kremer L
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26382225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.