These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31127502)
1. Transcriptomic analysis provides insight into the mechanism of salinity adjustment in swimming crab Portunus trituberculatus. Gao B; Sun D; Lv J; Ren X; Liu P; Li J Genes Genomics; 2019 Aug; 41(8):961-971. PubMed ID: 31127502 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. Lv J; Liu P; Wang Y; Gao B; Chen P; Li J PLoS One; 2013; 8(12):e82155. PubMed ID: 24312639 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome sequencing and analysis of male and female swimming crab (Portunus trituberculatus) reproductive systems during mating embrace (stage II). Wang Z; Sun L; Guan W; Zhou C; Tang B; Cheng Y; Huang J; Xuan F BMC Genet; 2018 Jan; 19(1):3. PubMed ID: 29298661 [TBL] [Abstract][Full Text] [Related]
4. A chromosome-level genome of Portunus trituberculatus provides insights into its evolution, salinity adaptation and sex determination. Lv J; Li R; Su Z; Gao B; Ti X; Yan D; Liu G; Liu P; Wang C; Li J Mol Ecol Resour; 2022 May; 22(4):1606-1625. PubMed ID: 34854556 [TBL] [Abstract][Full Text] [Related]
5. mRNA expression profiles of heat shock proteins of wild and salinity-tolerant swimming crabs, Portunus trituberculatus, subjected to low salinity stress. Bao XN; Mu CK; Zhang C; Wang YF; Song WW; Li RH; Wang CL Genet Mol Res; 2014 Aug; 13(3):6837-47. PubMed ID: 25177963 [TBL] [Abstract][Full Text] [Related]
6. Hepatopancreas and ovarian transcriptome response to different dietary soybean lecithin levels in Portunus trituberculatus. Zhou QC; Shi B; Jiao LF; Jin M; Sun P; Ding LY; Yuan Y Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100600. PubMed ID: 31228712 [TBL] [Abstract][Full Text] [Related]
7. Differential molecular responses of hemolymph and hepatopancreas of swimming crab, Portunus trituberculatus, infected with Ameson portunus (Microsporidia). Xin ZZ; Zhang XT; Zhou M; Chen JY; Zhu ZQ; Zhang JY Fish Shellfish Immunol; 2024 Feb; 145():109324. PubMed ID: 38134977 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptome Analysis of the Response to Sun D; Lv J; Li Y; Wu J; Liu P; Gao B Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132344 [No Abstract] [Full Text] [Related]
9. Molecular cloning and sequence analysis of two carbonic anhydrase in the swimming crab Portunus trituberculatus and its expression in response to salinity and pH stress. Pan L; Hu D; Liu M; Hu Y; Liu S Gene; 2016 Jan; 576(1 Pt 2):347-57. PubMed ID: 26526129 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide identification and low-salinity stress analysis of the Hsp70 gene family in swimming crab (Portunus trituberculatus). Jin S; Deng Z; Xu S; Zhang H; Han Z Int J Biol Macromol; 2022 May; 208():126-135. PubMed ID: 35301000 [TBL] [Abstract][Full Text] [Related]
11. The identification and characteristics of salinity-related microRNAs in gills of Portunus trituberculatus. Lv J; Liu P; Gao B; Li J Cell Stress Chaperones; 2016 Jan; 21(1):63-74. PubMed ID: 26373863 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptome analysis reveals osmotic-regulated genes in the gill of Chinese mitten crab (Eriocheir sinensis). Yang Z; Zhou J; Wei B; Cheng Y; Zhang L; Zhen X PLoS One; 2019; 14(1):e0210469. PubMed ID: 30629688 [TBL] [Abstract][Full Text] [Related]
13. De novo Transcriptome Analysis of Portunus trituberculatus Ovary and Testis by RNA-Seq: Identification of Genes Involved in Gonadal Development. Meng XL; Liu P; Jia FL; Li J; Gao BQ PLoS One; 2015; 10(6):e0128659. PubMed ID: 26042806 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptomics reveals the immune dynamics during the molting cycle of swimming crab Liu M; Ni H; Zhang X; Sun Q; Wu X; He J Front Immunol; 2022; 13():1037739. PubMed ID: 36389847 [TBL] [Abstract][Full Text] [Related]
15. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity. Ye Y; An Y; Li R; Mu C; Wang C J Agric Food Chem; 2014 Apr; 62(15):3496-503. PubMed ID: 24655103 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic analysis of adaptive mechanisms in response to sudden salinity drop in the mud crab, Scylla paramamosain. Wang H; Tang L; Wei H; Lu J; Mu C; Wang C BMC Genomics; 2018 May; 19(1):421. PubMed ID: 29855258 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus. Lv J; Zhang L; Liu P; Li J PLoS One; 2017; 12(4):e0175315. PubMed ID: 28394948 [TBL] [Abstract][Full Text] [Related]
18. Effects of salinity acclimation and eyestalk ablation on Na(+), K(+), 2Cl(-) cotransporter gene expression in the gill of Portunus trituberculatus:a molecular correlate for salt-tolerant trait. Lv J; Zhang D; Liu P; Li J Cell Stress Chaperones; 2016 Sep; 21(5):829-36. PubMed ID: 27278804 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional responses to low-salinity stress in the gills of adult female Portunus trituberculatus. Chen X; Chen J; Shen Y; Bi Y; Hou W; Pan G; Wu X Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():86-94. PubMed ID: 30463042 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of the Portunus trituberculatus: de novo assembly, growth-related gene identification and marker discovery. Lv J; Liu P; Gao B; Wang Y; Wang Z; Chen P; Li J PLoS One; 2014; 9(4):e94055. PubMed ID: 24722690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]