These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31127575)

  • 1. Methods for Studying DNA Single-Strand Break Repair and Signaling in Xenopus laevis Egg Extracts.
    Lin Y; Ha A; Yan S
    Methods Mol Biol; 2019; 1999():161-172. PubMed ID: 31127575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APE2 promotes DNA damage response pathway from a single-strand break.
    Lin Y; Bai L; Cupello S; Hossain MA; Deem B; McLeod M; Raj J; Yan S
    Nucleic Acids Res; 2018 Mar; 46(5):2479-2494. PubMed ID: 29361157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct regulation of ATM signaling by DNA single-strand breaks and APE1.
    Zhao H; Li J; You Z; Lindsay HD; Yan S
    Nat Commun; 2024 Aug; 15(1):6517. PubMed ID: 39112456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Strand Break End Resection in Genome Integrity: Mechanism and Regulation by APE2.
    Hossain MA; Lin Y; Yan S
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cip29 is phosphorylated following activation of the DNA damage response in Xenopus egg extracts.
    Holden J; Taylor EM; Lindsay HD
    PLoS One; 2017; 12(7):e0181131. PubMed ID: 28715428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APE1 senses DNA single-strand breaks for repair and signaling.
    Lin Y; Raj J; Li J; Ha A; Hossain MA; Richardson C; Mukherjee P; Yan S
    Nucleic Acids Res; 2020 Feb; 48(4):1925-1940. PubMed ID: 31828326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts.
    Guo Z; Kumagai A; Wang SX; Dunphy WG
    Genes Dev; 2000 Nov; 14(21):2745-56. PubMed ID: 11069891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression.
    Khoronenkova SV; Dianov GL
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3997-4002. PubMed ID: 25775545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Claspin - checkpoint adaptor and DNA replication factor.
    Smits VAJ; Cabrera E; Freire R; Gillespie DA
    FEBS J; 2019 Feb; 286(3):441-455. PubMed ID: 29931808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REV1 is important for the ATR-Chk1 DNA damage response pathway in Xenopus egg extracts.
    DeStephanis D; McLeod M; Yan S
    Biochem Biophys Res Commun; 2015 May; 460(3):609-15. PubMed ID: 25800873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3.
    Lian X; Bao C; Li X; Zhang X; Chen H; Jung YS; Qian Y
    J Virol; 2019 May; 93(9):. PubMed ID: 30787154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint.
    Hekmat-Nejad M; You Z; Yee MC; Newport JW; Cimprich KA
    Curr Biol; 2000 Dec 14-28; 10(24):1565-73. PubMed ID: 11137007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphorylated C-terminal domain of Xenopus Cut5 directly mediates ATR-dependent activation of Chk1.
    Hashimoto Y; Tsujimura T; Sugino A; Takisawa H
    Genes Cells; 2006 Sep; 11(9):993-1007. PubMed ID: 16923121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.
    Hoogenboom WS; Klein Douwel D; Knipscheer P
    Dev Biol; 2017 Aug; 428(2):300-309. PubMed ID: 28427716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of TOPBP1's role in ATR signaling using the DSB-mediated ATR activation in Xenopus egg extracts (DMAX) system.
    Montales K; Kim A; Ruis K; Michael WM
    Sci Rep; 2021 Jan; 11(1):467. PubMed ID: 33432091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural determinants of checkpoint activation.
    MacDougall CA; Byun TS; Van C; Yee MC; Cimprich KA
    Genes Dev; 2007 Apr; 21(8):898-903. PubMed ID: 17437996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles of XRCC1 in genome integrity in Xenopus egg extracts.
    Cupello S; Lin Y; Yan S
    Biochem J; 2019 Dec; 476(24):3791-3804. PubMed ID: 31808793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin Immunoprecipitation (ChIP) of Plasmid-Bound Proteins in Xenopus Egg Extracts.
    Wolfe KB; Long DT
    Methods Mol Biol; 2019; 1999():173-184. PubMed ID: 31127576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures.
    Yoo HY; Jeong SY; Dunphy WG
    Genes Dev; 2006 Apr; 20(7):772-83. PubMed ID: 16547171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-strand DNA breaks cause replisome disassembly.
    Vrtis KB; Dewar JM; Chistol G; Wu RA; Graham TGW; Walter JC
    Mol Cell; 2021 Mar; 81(6):1309-1318.e6. PubMed ID: 33484638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.