These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31127576)

  • 1. Chromatin Immunoprecipitation (ChIP) of Plasmid-Bound Proteins in Xenopus Egg Extracts.
    Wolfe KB; Long DT
    Methods Mol Biol; 2019; 1999():173-184. PubMed ID: 31127576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins.
    Gillespie PJ; Gambus A; Blow JJ
    Methods; 2012 Jun; 57(2):203-13. PubMed ID: 22521908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3.
    Mimura S; Kubota Y; Takisawa H
    Cell Cycle; 2018; 17(4):492-505. PubMed ID: 29261034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of histones and chromatin in Xenopus laevis egg and oocyte extracts.
    Banaszynski LA; Allis CD; Shechter D
    Methods; 2010 May; 51(1):3-10. PubMed ID: 20051265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for Studying DNA Single-Strand Break Repair and Signaling in Xenopus laevis Egg Extracts.
    Lin Y; Ha A; Yan S
    Methods Mol Biol; 2019; 1999():161-172. PubMed ID: 31127575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin immunoprecipitation for studying transcriptional regulation in Xenopus oocytes and tadpoles.
    Stewart D; Tomita A; Shi YB; Wong J
    Methods Mol Biol; 2006; 322():165-81. PubMed ID: 16739723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Damage Response in Xenopus laevis Cell-Free Extracts.
    Aparicio Casado T; Gautier J
    Methods Mol Biol; 2021; 2267():103-144. PubMed ID: 33786788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of DUF/FACT into chromatin enhances the accessibility of nucleosomal DNA.
    Seo H; Okuhara K; Kurumizaka H; Yamada T; Shibata T; Ohta K; Akiyama T; Murofushi H
    Biochem Biophys Res Commun; 2003 Mar; 303(1):8-13. PubMed ID: 12646158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using ChIP-SICAP to Identify Proteins That Co-localize in Chromatin.
    Rafiee MR; Krijgsveld J
    Methods Mol Biol; 2021; 2351():275-288. PubMed ID: 34382195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin immunoprecipitation analysis of Xenopus embryos.
    Akkers RC; Jacobi UG; Veenstra GJ
    Methods Mol Biol; 2012; 917():279-92. PubMed ID: 22956095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA replication in nucleus-free Xenopus egg extracts.
    Lebofsky R; Takahashi T; Walter JC
    Methods Mol Biol; 2009; 521():229-52. PubMed ID: 19563110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics Methods for
    Gilchrist MJ; Cho KWY; Veenstra GJC
    Cold Spring Harb Protoc; 2020 May; 2020(5):097915. PubMed ID: 32123020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide snapshot of chromatin regulators and states in Xenopus embryos by ChIP-Seq.
    Gentsch GE; Patrushev I; Smith JC
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25742027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses.
    Yoo HY; Shevchenko A; Shevchenko A; Dunphy WG
    J Biol Chem; 2004 Dec; 279(51):53353-64. PubMed ID: 15448142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin assembly and transcriptional cross-talk in Xenopus laevis oocyte and egg extracts.
    Wang WL; Shechter D
    Int J Dev Biol; 2016; 60(7-8-9):315-320. PubMed ID: 27759158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the origin recognition complex and the replication licensing system in Xenopus.
    Rowles A; Chong JP; Brown L; Howell M; Evan GI; Blow JJ
    Cell; 1996 Oct; 87(2):287-96. PubMed ID: 8861912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin Immunoprecipitation for Identification of Protein-DNA Interactions in Human Cells.
    Larsen BD; Madsen MR; Nielsen R; Mandrup S
    Methods Mol Biol; 2018; 1794():335-352. PubMed ID: 29855970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear proteins of quiescent Xenopus laevis cells inhibit DNA replication in intact and permeabilized nuclei.
    Fang J; Benbow RM
    J Cell Biol; 1996 Jun; 133(5):955-69. PubMed ID: 8655587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts.
    Walter JC
    J Biol Chem; 2000 Dec; 275(50):39773-8. PubMed ID: 11005825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.