BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 31127649)

  • 21. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway.
    Parsanathan R; Jain SK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-6-phosphate dehydrogenase is a regulator of vascular smooth muscle contraction.
    Gupte RS; Ata H; Rawat D; Abe M; Taylor MS; Ochi R; Gupte SA
    Antioxid Redox Signal; 2011 Feb; 14(4):543-58. PubMed ID: 20649491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of glutathione reductase uncovers the activation of NADPH-inhibited glucose-6-phosphate dehydrogenase.
    González-Blanco A; Allo A; Barcia R; Ramos-Martínez JI
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1690-1695. PubMed ID: 34387395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection.
    García-Nogales P; Almeida A; Bolaños JP
    J Biol Chem; 2003 Jan; 278(2):864-74. PubMed ID: 12414804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway.
    Ghergurovich JM; García-Cañaveras JC; Wang J; Schmidt E; Zhang Z; TeSlaa T; Patel H; Chen L; Britt EC; Piqueras-Nebot M; Gomez-Cabrera MC; Lahoz A; Fan J; Beier UH; Kim H; Rabinowitz JD
    Nat Chem Biol; 2020 Jul; 16(7):731-739. PubMed ID: 32393898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.
    Pandolfi PP; Sonati F; Rivi R; Mason P; Grosveld F; Luzzatto L
    EMBO J; 1995 Nov; 14(21):5209-15. PubMed ID: 7489710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.
    Saddala MS; Lennikov A; Huang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats.
    Huang H; Liu Z; Qi X; Gao N; Chang J; Yang M; Na S; Liu Y; Song R; Li L; Chen G; Zhou H
    J Ethnopharmacol; 2021 Dec; 281():114479. PubMed ID: 34343647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply.
    Xue J; Balamurugan S; Li DW; Liu YH; Zeng H; Wang L; Yang WD; Liu JS; Li HY
    Metab Eng; 2017 May; 41():212-221. PubMed ID: 28465173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation.
    Tuttle S; Stamato T; Perez ML; Biaglow J
    Radiat Res; 2000 Jun; 153(6):781-7. PubMed ID: 10825753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases.
    Gupte SA
    Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia.
    Imahori T; Hosoda K; Nakai T; Yamamoto Y; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E
    Neuroscience; 2017 May; 349():1-16. PubMed ID: 28257891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. JNK modifies neuronal metabolism to promote proteostasis and longevity.
    Wang L; Davis SS; Borch Jensen M; Rodriguez-Fernandez IA; Apaydin C; Juhasz G; Gibson BW; Schilling B; Ramanathan A; Ghaemmaghami S; Jasper H
    Aging Cell; 2019 Jun; 18(3):e12849. PubMed ID: 30810280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.