These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 31127649)

  • 21. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway.
    Parsanathan R; Jain SK
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
    Gupte SA; Kaminski PM; Floyd B; Agarwal R; Ali N; Ahmad M; Edwards J; Wolin MS
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H13-21. PubMed ID: 15345489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-6-phosphate dehydrogenase is a regulator of vascular smooth muscle contraction.
    Gupte RS; Ata H; Rawat D; Abe M; Taylor MS; Ochi R; Gupte SA
    Antioxid Redox Signal; 2011 Feb; 14(4):543-58. PubMed ID: 20649491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of glutathione reductase uncovers the activation of NADPH-inhibited glucose-6-phosphate dehydrogenase.
    González-Blanco A; Allo A; Barcia R; Ramos-Martínez JI
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1690-1695. PubMed ID: 34387395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection.
    García-Nogales P; Almeida A; Bolaños JP
    J Biol Chem; 2003 Jan; 278(2):864-74. PubMed ID: 12414804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway.
    Ghergurovich JM; García-Cañaveras JC; Wang J; Schmidt E; Zhang Z; TeSlaa T; Patel H; Chen L; Britt EC; Piqueras-Nebot M; Gomez-Cabrera MC; Lahoz A; Fan J; Beier UH; Kim H; Rabinowitz JD
    Nat Chem Biol; 2020 Jul; 16(7):731-739. PubMed ID: 32393898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.
    Pandolfi PP; Sonati F; Rivi R; Mason P; Grosveld F; Luzzatto L
    EMBO J; 1995 Nov; 14(21):5209-15. PubMed ID: 7489710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches.
    Saddala MS; Lennikov A; Huang H
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhubarb granule promotes diethylnitrosamine-induced liver tumorigenesis by activating the oxidative branch of pentose phosphate pathway via G6PD in rats.
    Huang H; Liu Z; Qi X; Gao N; Chang J; Yang M; Na S; Liu Y; Song R; Li L; Chen G; Zhou H
    J Ethnopharmacol; 2021 Dec; 281():114479. PubMed ID: 34343647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply.
    Xue J; Balamurugan S; Li DW; Liu YH; Zeng H; Wang L; Yang WD; Liu JS; Li HY
    Metab Eng; 2017 May; 41():212-221. PubMed ID: 28465173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation.
    Tuttle S; Stamato T; Perez ML; Biaglow J
    Radiat Res; 2000 Jun; 153(6):781-7. PubMed ID: 10825753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose-6-phosphate dehydrogenase: a novel therapeutic target in cardiovascular diseases.
    Gupte SA
    Curr Opin Investig Drugs; 2008 Sep; 9(9):993-1000. PubMed ID: 18729006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia.
    Imahori T; Hosoda K; Nakai T; Yamamoto Y; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E
    Neuroscience; 2017 May; 349():1-16. PubMed ID: 28257891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. JNK modifies neuronal metabolism to promote proteostasis and longevity.
    Wang L; Davis SS; Borch Jensen M; Rodriguez-Fernandez IA; Apaydin C; Juhasz G; Gibson BW; Schilling B; Ramanathan A; Ghaemmaghami S; Jasper H
    Aging Cell; 2019 Jun; 18(3):e12849. PubMed ID: 30810280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.