These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31127751)
1. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Syaifudin A; Ariatedja JB; Kaelani Y; Takeda R; Sasaki K Biomed Mater Eng; 2019; 30(3):309-322. PubMed ID: 31127751 [TBL] [Abstract][Full Text] [Related]
2. Development of asymmetric stent for treatment of eccentric plaque. Syaifudin A; Takeda R; Sasaki K Biomed Mater Eng; 2018; 29(3):299-317. PubMed ID: 29578470 [TBL] [Abstract][Full Text] [Related]
3. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related]
4. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
5. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis. Welch TR; Eberhart RC; Banerjee S; Chuong CJ Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671 [TBL] [Abstract][Full Text] [Related]
6. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation. Schiavone A; Zhao LG; Abdel-Wahab AA Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145 [TBL] [Abstract][Full Text] [Related]
7. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. Iannaccone F; Debusschere N; De Bock S; De Beule M; Van Loo D; Vermassen F; Segers P; Verhegghe B J Biomech; 2014 Mar; 47(4):890-8. PubMed ID: 24480704 [TBL] [Abstract][Full Text] [Related]
8. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation. He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295 [TBL] [Abstract][Full Text] [Related]
9. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
10. Influences of plaque eccentricity and composition on the stent-plaque-artery interaction during stent implantation. Wei L; Chen Q; Li Z Biomech Model Mechanobiol; 2019 Feb; 18(1):45-56. PubMed ID: 30097815 [TBL] [Abstract][Full Text] [Related]
11. Effect of longitudinal anatomical mismatch of stenting on the mechanical environment in human carotid artery with atherosclerotic plaques. Fan Z; Liu X; Sun A; Zhang N; Fan Z; Fan Y; Deng X Med Eng Phys; 2017 Oct; 48():114-119. PubMed ID: 28826570 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel. Schiavone A; Abunassar C; Hossainy S; Zhao LG J Biomech; 2016 Sep; 49(13):2677-2683. PubMed ID: 27318369 [TBL] [Abstract][Full Text] [Related]
13. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Karimi A; Navidbakhsh M; Yamada H; Razaghi R Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756 [TBL] [Abstract][Full Text] [Related]
14. Effects of plaque lengths on stent surface roughness. Syaifudin A; Takeda R; Sasaki K Biomed Mater Eng; 2015; 25(2):189-202. PubMed ID: 25813957 [TBL] [Abstract][Full Text] [Related]
15. Optical coherence tomography after carotid stenting: rate of stent malapposition, plaque prolapse and fibrous cap rupture according to stent design. de Donato G; Setacci F; Sirignano P; Galzerano G; Cappelli A; Setacci C Eur J Vasc Endovasc Surg; 2013 Jun; 45(6):579-87. PubMed ID: 23582886 [TBL] [Abstract][Full Text] [Related]
16. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Cilla M; Peña E; Martínez MA Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796 [TBL] [Abstract][Full Text] [Related]
17. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. Timmins LH; Meyer CA; Moreno MR; Moore JE J Endovasc Ther; 2008 Dec; 15(6):643-54. PubMed ID: 19090628 [TBL] [Abstract][Full Text] [Related]
18. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Gökgöl C; Diehm N; Büchler P Ann Biomed Eng; 2017 Jun; 45(6):1420-1433. PubMed ID: 28150055 [TBL] [Abstract][Full Text] [Related]
19. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. Wong KK; Thavornpattanapong P; Cheung SC; Sun Z; Tu J BMC Cardiovasc Disord; 2012 Feb; 12():7. PubMed ID: 22336469 [TBL] [Abstract][Full Text] [Related]
20. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Pericevic I; Lally C; Toner D; Kelly DJ Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]