These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31127751)
21. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Liang DK; Yang DZ; Qi M; Wang WQ Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062 [TBL] [Abstract][Full Text] [Related]
22. Finite element analysis and stent design: Reduction of dogboning. De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746 [TBL] [Abstract][Full Text] [Related]
23. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725 [TBL] [Abstract][Full Text] [Related]
24. Mechanical behavior of coronary stents investigated through the finite element method. Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000 [TBL] [Abstract][Full Text] [Related]
25. A numerical study on the effect of geometrical parameters and loading profile on the expansion of stent. Beigzadeh B; Mirmohammadi SA; Ayatollahi MR Biomed Mater Eng; 2017; 28(5):463-476. PubMed ID: 28854490 [TBL] [Abstract][Full Text] [Related]
26. An analysis of the contact between the stent and the artery using tube hydroforming simulation. Araújo R; Guimarães TA; Oliveira SA Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1214-22. PubMed ID: 23813983 [TBL] [Abstract][Full Text] [Related]
27. Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks. Hsiao HM; Wu YY; Tsai BC; Chen YC; Cheng YH Technol Health Care; 2015; 24 Suppl 1():S155-61. PubMed ID: 26684564 [TBL] [Abstract][Full Text] [Related]
28. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test. Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877 [TBL] [Abstract][Full Text] [Related]
29. Comparative study of tapered versus conventional cylindrical balloon for stent implantation in stenotic tapered artery. Shen X; Jiang J; Zhu H; Lu K; Dong P; Gu L Artif Organs; 2020 Jul; 44(7):727-735. PubMed ID: 32017159 [TBL] [Abstract][Full Text] [Related]
30. Consideration of stiffness of wall layers is decisive for patient-specific analysis of carotid artery with atheroma. Lisický O; Malá A; Bednařík Z; Novotný T; Burša J PLoS One; 2020; 15(9):e0239447. PubMed ID: 32991605 [TBL] [Abstract][Full Text] [Related]
31. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Qiu TY; Zhao LG; Song M Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211 [TBL] [Abstract][Full Text] [Related]
32. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. Morlacchi S; Pennati G; Petrini L; Dubini G; Migliavacca F J Biomech; 2014 Mar; 47(4):899-907. PubMed ID: 24468208 [TBL] [Abstract][Full Text] [Related]
33. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Faghihi S; Shojaei A; Hassani K Proc Inst Mech Eng H; 2013 Feb; 227(2):148-61. PubMed ID: 23513986 [TBL] [Abstract][Full Text] [Related]
34. An Optical Coherence Tomography Assessment of Stent Strut Apposition Based on the Presence of Lipid-Rich Plaque in the Carotid Artery. Liu R; Jiang Y; Xiong Y; Li M; Ma M; Zhu W; Yin Q; Li W; Xu G; Liu X J Endovasc Ther; 2015 Dec; 22(6):942-9. PubMed ID: 26464412 [TBL] [Abstract][Full Text] [Related]
35. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Pant S; Bressloff NW; Limbert G Biomech Model Mechanobiol; 2012 Jan; 11(1-2):61-82. PubMed ID: 21373889 [TBL] [Abstract][Full Text] [Related]
36. Lumen irregularity dominates the relationship between mechanical stress condition, fibrous-cap thickness, and lumen curvature in carotid atherosclerotic plaque. Teng Z; Sadat U; Ji G; Zhu C; Young VE; Graves MJ; Gillard JH J Biomech Eng; 2011 Mar; 133(3):034501. PubMed ID: 21303186 [TBL] [Abstract][Full Text] [Related]
37. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
38. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. Gao H; Long Q J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671 [TBL] [Abstract][Full Text] [Related]
39. Assessment of mechanical indicators of carotid plaque vulnerability: Geometrical curvature metric, plaque stresses and damage in tissue fibres. Ghasemi M; Nolan DR; Lally C J Mech Behav Biomed Mater; 2020 Mar; 103():103573. PubMed ID: 32090902 [TBL] [Abstract][Full Text] [Related]
40. Assessment of carotid plaque vulnerability using structural and geometrical determinants. Li ZY; Tang T; U-King-Im J; Graves M; Sutcliffe M; Gillard JH Circ J; 2008 Jul; 72(7):1092-9. PubMed ID: 18577817 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]