These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31128193)

  • 1. Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus.
    Li FL; Zhou Q; Wei W; Gao J; Zhang YW
    Int J Biol Macromol; 2019 Aug; 135():328-336. PubMed ID: 31128193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal pH shift of the NADH oxidase from Lactobacillus rhamnosus with a single mutation.
    Zhou Q; Gao J; Zhang YW
    Biotechnol Lett; 2021 Jul; 43(7):1413-1420. PubMed ID: 33844097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus.
    Zhang YW; Tiwari MK; Gao H; Dhiman SS; Jeya M; Lee JK
    Enzyme Microb Technol; 2012 Apr; 50(4-5):255-62. PubMed ID: 22418266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of introduced surface cysteine of NADH oxidase from Lactobacillus rhamnosus.
    Li FL; Tao QL; Liu CY; Gao J; Zhang YW
    Int J Biol Macromol; 2019 Jul; 132():150-156. PubMed ID: 30926492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration.
    Gao H; Li J; Sivakumar D; Kim TS; Patel SKS; Kalia VC; Kim IW; Zhang YW; Lee JK
    Int J Biol Macromol; 2019 Feb; 123():629-636. PubMed ID: 30447371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus.
    Li FL; Su WB; Tao QL; Zhang LY; Zhang YW
    Enzyme Microb Technol; 2020 Mar; 134():109464. PubMed ID: 32044036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of a thermostable F
    Kumar H; Nguyen QT; Binda C; Mattevi A; Fraaije MW
    J Biol Chem; 2017 Jun; 292(24):10123-10130. PubMed ID: 28411200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175.
    Li FL; Shi Y; Zhang JX; Gao J; Zhang YW
    Int J Biol Macromol; 2018 Jul; 113():1073-1079. PubMed ID: 29514042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of coenzyme binding and selectivity determinants in Mycobacterium tuberculosis flavoprotein reductase A: analysis of Arg(199) and Arg(200) mutants at the NADP(H) 2'-phosphate binding site.
    Sabri M; Dunford AJ; McLean KJ; Neeli R; Scrutton NS; Leys D; Munro AW
    Biochem J; 2009 Jan; 417(1):103-12. PubMed ID: 18767989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridine nucleotide complexes with Bacillus anthracis coenzyme A-disulfide reductase: a structural analysis of dual NAD(P)H specificity.
    Wallen JR; Paige C; Mallett TC; Karplus PA; Claiborne A
    Biochemistry; 2008 May; 47(18):5182-93. PubMed ID: 18399646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. b-type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum.
    Kawasaki S; Satoh T; Todoroki M; Niimura Y
    Appl Environ Microbiol; 2009 Feb; 75(3):629-36. PubMed ID: 19060157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetically encoded tool for manipulation of NADP
    Cracan V; Titov DV; Shen H; Grabarek Z; Mootha VK
    Nat Chem Biol; 2017 Oct; 13(10):1088-1095. PubMed ID: 28805804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction with arginine 597 of NADPH-cytochrome P-450 oxidoreductase is a primary source of the uniform binding energy used to discriminate between NADPH and NADH.
    Sem DS; Kasper CB
    Biochemistry; 1993 Nov; 32(43):11548-58. PubMed ID: 8218222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A NAD(P)H oxidase isolated from the archaeon Sulfolobus solfataricus is not homologous with another NADH oxidase present in the same microorganism. Biochemical characterization of the enzyme and cloning of the encoding gene.
    Arcari P; Masullo L; Masullo M; Catanzano F; Bocchini V
    J Biol Chem; 2000 Jan; 275(2):895-900. PubMed ID: 10625624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309.
    Hirano J; Miyamoto K; Ohta H
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):71-8. PubMed ID: 18521590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand binding and conformational dynamics in a flavin-based electron-bifurcating enzyme complex revealed by Hydrogen-Deuterium Exchange Mass Spectrometry.
    Demmer JK; Rupprecht FA; Eisinger ML; Ermler U; Langer JD
    FEBS Lett; 2016 Dec; 590(24):4472-4479. PubMed ID: 27889905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.