These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 31128223)

  • 1. Riboswitch distribution, structure, and function in bacteria.
    Pavlova N; Kaloudas D; Penchovsky R
    Gene; 2019 Aug; 708():38-48. PubMed ID: 31128223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Dis)similar Analogues of Riboswitch Metabolites as Antibacterial Lead Compounds.
    Matzner D; Mayer G
    J Med Chem; 2015 Apr; 58(8):3275-86. PubMed ID: 25603286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches.
    Perez-Gonzalez C; Grondin JP; Lafontaine DA; Carlos Penedo J
    Adv Exp Med Biol; 2016; 915():157-91. PubMed ID: 27193543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promise of riboswitches as potential antibacterial drug targets.
    Lünse CE; Schüller A; Mayer G
    Int J Med Microbiol; 2014 Jan; 304(1):79-92. PubMed ID: 24140145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial lysine analogs that target lysine riboswitches.
    Blount KF; Wang JX; Lim J; Sudarsan N; Breaker RR
    Nat Chem Biol; 2007 Jan; 3(1):44-9. PubMed ID: 17143270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboswitch-based antibacterial drug discovery using high-throughput screening methods.
    Penchovsky R; Stoilova CC
    Expert Opin Drug Discov; 2013 Jan; 8(1):65-82. PubMed ID: 23163232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Novel targets for antibiotics discovery: riboswitches].
    Jia DF; Jia DF; Jia DF
    Yao Xue Xue Bao; 2013 Sep; 48(9):1361-8. PubMed ID: 24358767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RSwitch: A Novel Bioinformatics Database on Riboswitches as Antibacterial Drug Targets.
    Penchovsky R; Pavlova N; Kaloudas D
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):804-808. PubMed ID: 32248122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The riboswitch control of bacterial metabolism.
    Nudler E; Mironov AS
    Trends Biochem Sci; 2004 Jan; 29(1):11-7. PubMed ID: 14729327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events.
    Stephen C; Palmer D; Mishanina TV
    Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
    Sherwood AV; Henkin TM
    Annu Rev Microbiol; 2016 Sep; 70():361-74. PubMed ID: 27607554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.
    Lee ER; Blount KF; Breaker RR
    RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances and future trends of riboswitches: attractive regulatory tools.
    Sinumvayo JP; Zhao C; Tuyishime P
    World J Microbiol Biotechnol; 2018 Nov; 34(11):171. PubMed ID: 30413889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective small-molecule inhibition of an RNA structural element.
    Howe JA; Wang H; Fischmann TO; Balibar CJ; Xiao L; Galgoci AM; Malinverni JC; Mayhood T; Villafania A; Nahvi A; Murgolo N; Barbieri CM; Mann PA; Carr D; Xia E; Zuck P; Riley D; Painter RE; Walker SS; Sherborne B; de Jesus R; Pan W; Plotkin MA; Wu J; Rindgen D; Cummings J; Garlisi CG; Zhang R; Sheth PR; Gill CJ; Tang H; Roemer T
    Nature; 2015 Oct; 526(7575):672-7. PubMed ID: 26416753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria.
    Pavlova N; Penchovsky R
    Expert Opin Ther Targets; 2019 Jul; 23(7):631-643. PubMed ID: 31079546
    [No Abstract]   [Full Text] [Related]  

  • 18. New insights into riboswitch regulation mechanisms.
    Bastet L; Dubé A; Massé E; Lafontaine DA
    Mol Microbiol; 2011 Jun; 80(5):1148-54. PubMed ID: 21477128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational approach for the identification of distant homologs of bacterial riboswitches based on inverse RNA folding.
    Mukherjee S; Retwitzer MD; Hubbell SM; Meyer MM; Barash D
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36951499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
    Stamatopoulou V; Apostolidi M; Li S; Lamprinou K; Papakyriakou A; Zhang J; Stathopoulos C
    Nucleic Acids Res; 2017 Sep; 45(17):10242-10258. PubMed ID: 28973457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.