BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31128321)

  • 1. An integrated cell printing system for the construction of heterogeneous tissue models.
    Liu TK; Pang Y; Zhou ZZ; Yao R; Sun W
    Acta Biomater; 2019 Sep; 95():245-257. PubMed ID: 31128321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of In Vitro Hydrogel Microcarriers by Alternating Viscous-Inertial Force Jetting.
    Liu T; Shao Y; Wang Z; Chen Y; Pang Y; Weng D; Sun W
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system.
    Xie M; Gao Q; Qiu J; Fu J; Chen Z; He Y
    Biomater Sci; 2019 Dec; 8(1):109-117. PubMed ID: 31761908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications.
    Gutzweiler L; Kartmann S; Troendle K; Benning L; Finkenzeller G; Zengerle R; Koltay P; Stark GB; Zimmermann S
    Biofabrication; 2017 Jun; 9(2):025027. PubMed ID: 28488594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of hydrogels for bioprinting of endothelial cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis.
    Anada T; Pan CC; Stahl AM; Mori S; Fukuda J; Suzuki O; Yang Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput fabrication of vascularized spheroids for bioprinting.
    De Moor L; Merovci I; Baetens S; Verstraeten J; Kowalska P; Krysko DV; De Vos WH; Declercq H
    Biofabrication; 2018 Jun; 10(3):035009. PubMed ID: 29798932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance.
    Hong S; Song JM
    Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids.
    Kim SJ; Park J; Byun H; Park YW; Major LG; Lee DY; Choi YS; Shin H
    Biomaterials; 2019 Jan; 188():198-212. PubMed ID: 30368228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Bioprinting of 3D Multicellular Breast Spheroids onto Endothelial Networks.
    Swaminathan S; Clyne AM
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33191938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds
    Su H; Li Q; Li D; Li H; Feng Q; Cao X; Dong H
    Mater Horiz; 2022 Aug; 9(9):2393-2407. PubMed ID: 35789239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.