These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31128659)

  • 41. An electron microscopic study of eccrine sweat glands of the catfoot and toe pads--evidence for ductal reabsorption in the human.
    MUNGER BL; BRUSILOW SW
    J Biophys Biochem Cytol; 1961 Nov; 11(2):403-17. PubMed ID: 14477204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evolution of eccrine sweat glands in human and nonhuman primates.
    Best A; Kamilar JM
    J Hum Evol; 2018 Apr; 117():33-43. PubMed ID: 29544622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human sudomotor responses to heating and cooling upper-body skin surfaces: cutaneous thermal sensitivity.
    Patterson MJ; Cotter JD; Taylor NA
    Acta Physiol Scand; 1998 Jul; 163(3):289-96. PubMed ID: 9715741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upright LBPP application attenuates elevated postexercise resting thresholds for cutaneous vasodilation and sweating.
    Jackson DN; Kenny GP
    J Appl Physiol (1985); 2003 Jul; 95(1):121-8. PubMed ID: 12611766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sudomotor function in human poikilothermia.
    MacKenzie MA; Schönbaum E; Hermus AR; Wollersheim HC; Thien T; Smals AG; Kloppenborg PW
    Neurology; 1995 Aug; 45(8):1602-7. PubMed ID: 7644060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eccrine sweat gland in Macaca mulatta: physiology, histochemistry, and distribution.
    Johnson GS; Elizondo RS
    J Appl Physiol; 1974 Dec; 37(6):814-20. PubMed ID: 4373430
    [No Abstract]   [Full Text] [Related]  

  • 47. Indirect hand and forearm vasomotion: Regional variations in cutaneous thermosensitivity during normothermia and mild hyperthermia.
    Burdon CA; Tagami K; Park J; Caldwell JN; Taylor NA
    J Therm Biol; 2017 Apr; 65():95-104. PubMed ID: 28343583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of calcium regulation on eccrine sweating and sweating disorders: the view from cells to glands to intact human skin.
    Metzler-Wilson K; Wilson TE
    Exp Physiol; 2016 Mar; 101(3):345-6. PubMed ID: 27203840
    [No Abstract]   [Full Text] [Related]  

  • 49. In vivo and in vitro characteristics of eccrine sweating in patas and rhesus monkeys.
    Gisolfi CV; Sato K; Wall PT; Sato F
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Aug; 53(2):425-31. PubMed ID: 6749777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Brn2 overexpression on eccrine sweat gland development in the mouse paw.
    Chee MK; Jo SK; Sohn KC; Kim CD; Lee JH; Lee YH
    Biochem Biophys Res Commun; 2017 Aug; 490(3):901-905. PubMed ID: 28648603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sex- and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure.
    Inoue Y; Tanaka Y; Omori K; Kuwahara T; Ogura Y; Ueda H
    Eur J Appl Physiol; 2005 Jun; 94(3):323-32. PubMed ID: 15729550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Significance of skin pressure in body heat balance.
    Ogawa T; Asayama M; Ito M; Yoshida K
    Jpn J Physiol; 1979; 29(6):805-16. PubMed ID: 541903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exercise, performance and temperature control: temperature regulation during exercise and implications for sports performance and training.
    Fortney SM; Vroman NB
    Sports Med; 1985; 2(1):8-20. PubMed ID: 3883461
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decreased thermal sweating of central sudomotor mechanism in African and Korean men.
    Lee JB; Kim JH
    Am J Hum Biol; 2018 May; 30(3):e23091. PubMed ID: 29341311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?
    Kenny GP; Gagnon D; Jay O; McInnis NH; Journeay WS; Reardon FD
    Appl Physiol Nutr Metab; 2008 Aug; 33(4):682-9. PubMed ID: 18641710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Central blood volume influences sympathetic sudomotor nerve traffic in warm humans.
    Dodt C; Gunnarsson T; Elam M; Karlsson T; Wallin BG
    Acta Physiol Scand; 1995 Sep; 155(1):41-51. PubMed ID: 8553876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The local training effect of secretory activity on the response of eccrine sweat glands.
    Collins KJ; Crockford GW; Weiner JS
    J Physiol; 1966 May; 184(1):203-14. PubMed ID: 5921538
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition duration of ingested deuterium oxide to eccrine sweat during exercise in the heat.
    Church A; Lee F; Buono MJ
    J Therm Biol; 2017 Jan; 63():88-91. PubMed ID: 28010819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat acclimation increases skin vasodilation and sweating but not cardiac baroreflex responses in heat-stressed humans.
    Yamazaki F; Hamasaki K
    J Appl Physiol (1985); 2003 Oct; 95(4):1567-74. PubMed ID: 12794028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.