These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
681 related articles for article (PubMed ID: 31128697)
1. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873 [TBL] [Abstract][Full Text] [Related]
4. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356 [TBL] [Abstract][Full Text] [Related]
6. Virulence-related metabolism is activated in Soares F; Pimentel D; Erban A; Neves C; Reis P; Pereira M; Rego C; Gama-Carvalho M; Kopka J; Fortes AM Hortic Res; 2022; 9():uhac217. PubMed ID: 36479580 [No Abstract] [Full Text] [Related]
7. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). Zhu Y; Li Y; Zhang S; Zhang X; Yao J; Luo Q; Sun F; Wang X Plant Biol (Stuttg); 2019 Jul; 21(4):571-584. PubMed ID: 30468551 [TBL] [Abstract][Full Text] [Related]
9. Impact of hormone applications on ripening-related metabolites in Gewürztraminer grapes (Vitis vinifera L.): The key role of jasmonates in terpene modulation. Wang J; VanderWeide J; Yan Y; Tindjau R; Pico J; Deluc L; Zandberg WF; Castellarin SD Food Chem; 2022 Sep; 388():132948. PubMed ID: 35447584 [TBL] [Abstract][Full Text] [Related]
10. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893 [TBL] [Abstract][Full Text] [Related]
11. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Audenaert K; De Meyer GB; Höfte MM Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153 [TBL] [Abstract][Full Text] [Related]
12. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571 [TBL] [Abstract][Full Text] [Related]
13. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Liu S; Ziegler J; Zeier J; Birkenbihl RP; Somssich IE Plant Cell Environ; 2017 Oct; 40(10):2189-2206. PubMed ID: 28708934 [TBL] [Abstract][Full Text] [Related]
14. Phosphate deficiency increases plant susceptibility to Botrytis cinerea infection by inducing the abscisic acid pathway. Jaskolowski A; Poirier Y Plant J; 2024 Jul; 119(2):828-843. PubMed ID: 38804074 [TBL] [Abstract][Full Text] [Related]
15. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
16. Uncovering the effects of kaolin on balancing berry phytohormones and quality attributes of Vitis vinifera grown in warm-temperate climate regions. Bernardo S; Dinis LT; Machado N; Barros A; Pitarch-Bielsa M; Malheiro AC; Gómez-Cadenas A; Moutinho-Pereira J J Sci Food Agric; 2022 Jan; 102(2):782-793. PubMed ID: 34227127 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
18. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels. Gouthu S; Deluc LG BMC Plant Biol; 2015 Feb; 15():46. PubMed ID: 25848949 [TBL] [Abstract][Full Text] [Related]
19. Screening Rahman MU; Hanif M; Wan R; Hou X; Ahmad B; Wang X Molecules; 2018 Dec; 24(1):. PubMed ID: 30577474 [No Abstract] [Full Text] [Related]
20. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana. Zhang G; Yan X; Zhang S; Zhu Y; Zhang X; Qiao H; van Nocker S; Li Z; Wang X Plant Physiol Biochem; 2019 Oct; 143():329-339. PubMed ID: 31539762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]