BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 31128757)

  • 1. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion.
    Khoshbin Z; Housaindokht MR; Izadyar M; Verdian A; Bozorgmehr MR
    Anal Chim Acta; 2019 Sep; 1071():70-77. PubMed ID: 31128757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion.
    Zang Y; Lei J; Hao Q; Ju H
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15991-7. PubMed ID: 25170538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive label-free electrochemical aptasensor for Pb
    Li M; Liu H; He B; Xie L; Cao X; Jin H; Wei M; Ren W; Suo Z; Xu Y
    Talanta; 2024 Aug; 276():126260. PubMed ID: 38759364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.
    Arvand M; Mirroshandel AA
    Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform.
    Gao F; Gao C; He S; Wang Q; Wu A
    Biosens Bioelectron; 2016 Jul; 81():15-22. PubMed ID: 26913503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon.
    Arvand M; Mirroshandel AA
    Food Chem; 2019 May; 280():115-122. PubMed ID: 30642476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment.
    Long F; Zhu A; Wang H
    Anal Chim Acta; 2014 Nov; 849():43-9. PubMed ID: 25300216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An impedimetric aptasensor for ultrasensitive detection of Penicillin G based on the use of reduced graphene oxide and gold nanoparticles.
    Mohammad-Razdari A; Ghasemi-Varnamkhasti M; Izadi Z; Ensafi AA; Rostami S; Siadat M
    Mikrochim Acta; 2019 May; 186(6):372. PubMed ID: 31123905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide.
    Kou Q; Wu P; Sun Q; Li C; Zhang L; Shi H; Wu J; Wang Y; Yan X; Le T
    Anal Bioanal Chem; 2021 Jan; 413(3):901-909. PubMed ID: 33184760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.
    Li H; Sun DE; Liu Y; Liu Z
    Biosens Bioelectron; 2014 May; 55():149-56. PubMed ID: 24373954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics.
    Zhang Y; Duan B; Bao Q; Yang T; Wei T; Wang J; Mao C; Zhang C; Yang M
    J Mater Chem B; 2020 Sep; 8(37):8607-8613. PubMed ID: 32820795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A convenient paper-based fluorescent aptasensor for high-throughput detection of Pb
    Suo Z; Liang R; Liu R; Wei M; He B; Jiang L; Sun X; Jin H
    Anal Chim Acta; 2023 Jan; 1239():340714. PubMed ID: 36628769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.
    Wu S; Duan N; Shi Z; Fang C; Wang Z
    Talanta; 2014 Oct; 128():327-36. PubMed ID: 25059168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions.
    Khoshbin Z; Housaindokht MR; Verdian A
    Anal Biochem; 2020 May; 597():113689. PubMed ID: 32199832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury (II) sensing using a simple turn-on fluorescent graphene oxide based aptasensor in serum and water samples.
    Chaghazardi M; Kashanian S; Nazari M; Omidfar K; Shariati-Rad M; Joseph Y; Rahimi P
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124057. PubMed ID: 38457872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline.
    Rouhbakhsh Z; Verdian A; Rajabzadeh G
    Talanta; 2020 Jan; 206():120246. PubMed ID: 31514901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes.
    Taghdisi SM; Emrani SS; Tabrizian K; Ramezani M; Abnous K; Emrani AS
    Environ Toxicol Pharmacol; 2014 May; 37(3):1236-42. PubMed ID: 24835552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable resistive aptasensor for Pb(II) based on the Pb(II)-induced despiralization of a DNA duplex and formation of a G-quadruplex.
    Wang H; Liu Y; Liu G
    Mikrochim Acta; 2018 Jan; 185(2):142. PubMed ID: 29594681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z; Zhang Q
    Anal Chem; 2012 Jul; 84(14):6263-70. PubMed ID: 22816786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.