These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31129265)

  • 1. Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium.
    Guttuso T; Andrzejewski KL; Lichter DG; Andersen JK
    J Neurol Sci; 2019 Jul; 402():121-130. PubMed ID: 31129265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β.
    Kawakami F; Shimada N; Ohta E; Kagiya G; Kawashima R; Maekawa T; Maruyama H; Ichikawa T
    FEBS J; 2014 Jan; 281(1):3-13. PubMed ID: 24165324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Exposure to PFE-360 in the AAV-α-Synuclein Rat Model: Findings and Implications.
    Andersen MA; Sotty F; Jensen PH; Badolo L; Jeggo R; Smith GP; Christensen KV
    eNeuro; 2019; 6(6):. PubMed ID: 31685675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5.
    Shanley MR; Hawley D; Leung S; Zaidi NF; Dave R; Schlosser KA; Bandopadhyay R; Gerber SA; Liu M
    Biochemistry; 2015 Aug; 54(33):5198-208. PubMed ID: 26268594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High lithium levels in tobacco may account for reduced incidences of both Parkinson's disease and melanoma in smokers through enhanced β-catenin-mediated activity.
    Guttuso T
    Med Hypotheses; 2019 Oct; 131():109302. PubMed ID: 31443765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway.
    Ohta E; Nihira T; Uchino A; Imaizumi Y; Okada Y; Akamatsu W; Takahashi K; Hayakawa H; Nagai M; Ohyama M; Ryo M; Ogino M; Murayama S; Takashima A; Nishiyama K; Mizuno Y; Mochizuki H; Obata F; Okano H
    Hum Mol Genet; 2015 Sep; 24(17):4879-900. PubMed ID: 26056228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autosomal dominant Parkinson's disease and the route to new therapies.
    Morris HR
    Expert Rev Neurother; 2007 Jun; 7(6):649-56. PubMed ID: 17563248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders?
    Outeiro TF; Harvey K; Dominguez-Meijide A; Gerhardt E
    Biochem Soc Trans; 2019 Jun; 47(3):827-838. PubMed ID: 31085616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycogen synthase kinase 3 β activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of α-synuclein.
    Kofoed RH; Betzer C; Ferreira N; Jensen PH
    Neurobiol Dis; 2020 Mar; 136():104720. PubMed ID: 31881263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucine-Rich Repeat Kinase 2 in Parkinson's Disease: Updated from Pathogenesis to Potential Therapeutic Target.
    Chen J; Chen Y; Pu J
    Eur Neurol; 2018; 79(5-6):256-265. PubMed ID: 29705795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine-rich repeat kinase 2 and Parkinson's disease.
    Kang UB; Marto JA
    Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27723254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson's disease model.
    Kesh S; Kannan RR; Sivaji K; Balakrishnan A
    Neurosci Lett; 2021 Jan; 740():135426. PubMed ID: 33075420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity.
    Shu Y; Ming J; Zhang P; Wang Q; Jiao F; Tian B
    PLoS One; 2016; 11(3):e0149739. PubMed ID: 26930193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity.
    Lin CH; Lin HI; Chen ML; Lai TT; Cao LP; Farrer MJ; Wu RM; Chien CT
    Hum Mol Genet; 2016 May; 25(10):1965-1978. PubMed ID: 26931464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.
    Schapansky J; Khasnavis S; DeAndrade MP; Nardozzi JD; Falkson SR; Boyd JD; Sanderson JB; Bartels T; Melrose HL; LaVoie MJ
    Neurobiol Dis; 2018 Mar; 111():26-35. PubMed ID: 29246723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.
    Daher JP
    Adv Neurobiol; 2017; 14():209-226. PubMed ID: 28353286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Frontiers in Parkinson's Disease: From Genetics to the Clinic.
    Shihabuddin LS; Brundin P; Greenamyre JT; Stephenson D; Sardi SP
    J Neurosci; 2018 Oct; 38(44):9375-9382. PubMed ID: 30381429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LRRK2 and membrane trafficking: nexus of Parkinson's disease.
    Hur EM; Jang EH; Jeong GR; Lee BD
    BMB Rep; 2019 Sep; 52(9):533-539. PubMed ID: 31383252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice.
    Palomo-Garo C; Gómez-Gálvez Y; García C; Fernández-Ruiz J
    Pharmacol Res; 2016 Aug; 110():181-192. PubMed ID: 27063942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinases as targets for Parkinson's disease: from genetics to therapy.
    Vancraenenbroeck R; Lobbestael E; Maeyer MD; Baekelandt V; Taymans JM
    CNS Neurol Disord Drug Targets; 2011 Sep; 10(6):724-40. PubMed ID: 21838679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.