These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 31129557)

  • 1. Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans.
    Kadosh D
    Curr Opin Microbiol; 2019 Dec; 52():27-34. PubMed ID: 31129557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans.
    Albataineh MT; Lazzell A; Lopez-Ribot JL; Kadosh D
    Eukaryot Cell; 2014 Dec; 13(12):1538-47. PubMed ID: 25326520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms.
    Kadosh D
    Cell Mol Life Sci; 2016 Nov; 73(22):4265-4278. PubMed ID: 27312239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filamentation Is Associated with Reduced Pathogenicity of Multiple Non-
    Banerjee M; Lazzell AL; Romo JA; Lopez-Ribot JL; Kadosh D
    mSphere; 2019 Oct; 4(5):. PubMed ID: 31619502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans.
    Leberer E; Harcus D; Dignard D; Johnson L; Ushinsky S; Thomas DY; Schröppel K
    Mol Microbiol; 2001 Nov; 42(3):673-87. PubMed ID: 11722734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans.
    Lash E; Prudent V; Stogios PJ; Savchenko A; Noble SM; Robbins N; Cowen LE
    mBio; 2023 Apr; 14(2):e0343422. PubMed ID: 36809010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Candida albicans hyphae.
    Sudbery PE
    Nat Rev Microbiol; 2011 Aug; 9(10):737-48. PubMed ID: 21844880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional control of hyphal morphogenesis in Candida albicans.
    Villa S; Hamideh M; Weinstock A; Qasim MN; Hazbun TR; Sellam A; Hernday AD; Thangamani S
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31981355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.
    Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.
    Chang P; Fan X; Chen J
    Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.
    Cleary IA; Reinhard SM; Lazzell AL; Monteagudo C; Thomas DP; Lopez-Ribot JL; Saville SP
    FEMS Yeast Res; 2016 Mar; 16(2):fow011. PubMed ID: 26851404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans.
    Rai LS; Wijlick LV; Bougnoux ME; Bachellier-Bassi S; d'Enfert C
    Yeast; 2021 Apr; 38(4):243-250. PubMed ID: 33533498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in understanding
    Arkowitz RA; Bassilana M
    F1000Res; 2019; 8():. PubMed ID: 31131089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase-mediated morphological transition in Candida albicans.
    Kim J; Lee JE; Lee JS
    J Microbiol; 2015 Dec; 53(12):805-11. PubMed ID: 26626350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence.
    Ariyachet C; Solis NV; Liu Y; Prasadarao NV; Filler SG; McBride AE
    Infect Immun; 2013 Apr; 81(4):1267-76. PubMed ID: 23381995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.
    Liu Z; Moran GP; Sullivan DJ; MacCallum DM; Myers LC
    PLoS Genet; 2016 Oct; 12(10):e1006373. PubMed ID: 27741243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resveratrol impaired the morphological transition of Candida albicans under various hyphae-inducing conditions.
    Okamoto-Shibayama K; Sato Y; Azuma T
    J Microbiol Biotechnol; 2010 May; 20(5):942-5. PubMed ID: 20519919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.