These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31129557)

  • 21. SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence.
    Ariyachet C; Solis NV; Liu Y; Prasadarao NV; Filler SG; McBride AE
    Infect Immun; 2013 Apr; 81(4):1267-76. PubMed ID: 23381995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.
    Liu Z; Moran GP; Sullivan DJ; MacCallum DM; Myers LC
    PLoS Genet; 2016 Oct; 12(10):e1006373. PubMed ID: 27741243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans.
    Inglis DO; Johnson AD
    Mol Cell Biol; 2002 Dec; 22(24):8669-80. PubMed ID: 12446785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resveratrol impaired the morphological transition of Candida albicans under various hyphae-inducing conditions.
    Okamoto-Shibayama K; Sato Y; Azuma T
    J Microbiol Biotechnol; 2010 May; 20(5):942-5. PubMed ID: 20519919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of phenotypic transitions in the fungal pathogen Candida albicans.
    Huang G
    Virulence; 2012 May; 3(3):251-61. PubMed ID: 22546903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (1-aryloxy-2-hydroxypropyl)-phenylpiperazine derivatives suppress Candida albicans virulence by interfering with morphological transition.
    Zhao S; Huang JJ; Sun X; Huang X; Fu S; Yang L; Liu XW; He F; Deng Y
    Microb Biotechnol; 2018 Nov; 11(6):1080-1089. PubMed ID: 30221456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Candida albicans morphogenesis and host defence: discriminating invasion from colonization.
    Gow NA; van de Veerdonk FL; Brown AJ; Netea MG
    Nat Rev Microbiol; 2011 Dec; 10(2):112-22. PubMed ID: 22158429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fungal pathogenicity and morphological switches.
    Magee PT
    Nat Genet; 2010 Jul; 42(7):560-1. PubMed ID: 20581877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence.
    Carlisle PL; Banerjee M; Lazzell A; Monteagudo C; López-Ribot JL; Kadosh D
    Proc Natl Acad Sci U S A; 2009 Jan; 106(2):599-604. PubMed ID: 19116272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The regulation of hyphae growth in
    Chen H; Zhou X; Ren B; Cheng L
    Virulence; 2020 Dec; 11(1):337-348. PubMed ID: 32274962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory networks controlling Candida albicans morphogenesis.
    Brown AJ; Gow NA
    Trends Microbiol; 1999 Aug; 7(8):333-8. PubMed ID: 10431207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans.
    Toenjes KA; Stark BC; Brooks KM; Johnson DI
    J Med Microbiol; 2009 Jun; 58(Pt 6):779-790. PubMed ID: 19429755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.
    Liu X; Nie X; Ding Y; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone acetyltransferase encoded by NGG1 is required for morphological conversion and virulence of Candida albicans.
    Li DD; Fuchs BB; Wang Y; Huang XW; Hu DD; Sun Y; Chai D; Jiang YY; Mylonakis E
    Future Microbiol; 2017 Dec; 12():1497-1510. PubMed ID: 29110536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candida morphogenesis and host-pathogen interactions.
    Whiteway M; Oberholzer U
    Curr Opin Microbiol; 2004 Aug; 7(4):350-7. PubMed ID: 15358253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.
    Bahn YS; Sundstrom P
    J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans.
    Childers DS; Kadosh D
    PLoS One; 2015; 10(3):e0122775. PubMed ID: 25811669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dimorphism and virulence in Candida albicans.
    Mitchell AP
    Curr Opin Microbiol; 1998 Dec; 1(6):687-92. PubMed ID: 10066539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global translational landscape of the Candida albicans morphological transition.
    Mundodi V; Choudhary S; Smith AD; Kadosh D
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.